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Introduction 

Microbial communities play a key role in ecosystem-level processes such as decomposition of 

organic matter, nutrient cycling (Wright and Reddy, 2001), and processes affecting the efficiency of 

nutrient cycling and ecosystem function (Yao et al., 2000). These microbial processes include the release 

of extracellular enzymes, which function to convert complex organic molecules to simple organic 

constituents during decomposition of organic material (Prenger, J. P. and K. R. Reddy, 2004).  Soil 

enzymes are protein structured molecules that increase the reaction rate by catalyzing them without 

any permanent transformation (Dick and Kandeler, 2004). The substance acted upon by a soil enzyme is 

called a substrate (Fig. 1). 

 

Figure 1. Enzyme acting as a catalyst to breakdown complex substrates to bioavailable products 

that are more easily accessible to microorganisms. 

 The enzymatic reaction cleaves the substrate and releases a product, which can be a nutrient 

contained in the substrate. Enzyme production is a function of microbial activity which is regulated in 

part by nutrient availability (Sinsabaugh, 1994), where microbes produce enzymes to mobilize resources 

from compound sources when nutrients are limited (Harder and Dijikhuizen, 1983). These soil enzymes 

play an important role in biochemical process of organic matter recycling, soil physical properties, and 

microbial activity and/or biomass (Table 1) (Cherukumalli et al, 2017). The study of soil enzymology has 

provided insight to the function of enzymatic activity as an indicator of ecosystem biogeochemical 



processes, nutrient availability, rates of nutrient and carbon cycling, and even response to climate 

change. The objective of this publication is to provide a history of soil enzymology and interpretation of 

enzyme activity.      

History of Soil Enzymology  

Over 100 years ago, the first known report of soil enzymes by Albert Woods (1899) recorded the 

activity of oxidizing enzymes, such as peroxidases, and concluded that these extracellular enzymes arose 

from plant material like decaying roots. This quickly sparked a widespread acceptance of the presence of 

soil enzymatic activity, which lead to further investigation regarding locations, functions, and 

significance of this activity (Dick and Burns, 2011). Herbert Conn (1901) further developed the 

observations of Woods by highlighting the important role of higher plant and microbial enzymatic 

activity in agricultural processes concluding: “Without their agency in breaking up organic compounds 

the soil would rapidly become unfit for supporting life”.   

In the early 19th century, catalase was the dominant enzyme studied largely due to technological 

limitations that excluded measurements for assaying other enzymes (Dick and Burns, 2011). During this 

time, mechanistic studies incorrectly suggested that the reaction was solely inorganic (Osugi 1922), 

which were partly due to the poor correlations between biological measurements and enzyme activity, 

and the idea that catalase activity was a soil fertility indicator (Waksman and Dubos, 1926) was swiftly 

disregarded as too simplistic to reflect the complexity of soils (Waksman, 1927). Nevertheless, research 

focused on catalase as a biological indicator of soil fertility (Kurtyakov, 1931; Radu, 1931; Rotini, 1931, 

Galetti, 1932; Matsuno and Ichikava, 1934; Scharrer, 1927, 1928a,b, 1936), and the first paper published 

on the kinetics of soil catalase (Scharrer, 1933) shifted the prevalent consensus that catalase activity was 

driven by microorganisms.  



In 1957, Mclaren was the first to use irradiation techniques to conclusively establish the 

occurrence of catalytic enzymes that originate biologically, but are no longer controlled or associated 

with viable cells, which was later termed “abiontic” activity (Skujiņš,1978). The irradiation techniques 

demonstrated that at the right irradiation intensity, soils could not culture microorganisms but yet 

had high measurable urease and phosphatase activities. This supported the idea that although 

microorganisms were not present, enzymes were capable of being extracellular and catalytic without 

viable cells. In 1975, Ladd and Butler further substantiated the concept of abiontic enzymes by 

indicating that enzymes could be bound to on clay minerals, humic substances, or organo-mineral 

complexes but remain catalytic.   

In 1982, Burns described the importance of the role of abiontic enzymes in soil microbial 

ecology. The quantity of abiontic (extracellular) enzyme activity may be representative not only of the 

biological capacity of soil for enzymatic conversion of substrate, which is independent of the extent of 

microbial activity, but may also have an important and unexplored role in the ecology of 

microorganisms in soil (Burns, 1982). Burns regarded soil as a multi-celled organism that responded to 

substrate based on highly integrated components that included numerous microbial species, abiotic 

factors, and extracellular biological catalysts with different properties depending on location within 

the soil matrix. 

Abiontic enzymes were found in various locations within the soil such as within soil solution 

(Burns 1982). In 1990, Boyd and Mortland discovered that extracellular enzymes were primary 

stabilized to inorganic surfaces (mainly clay and iron oxides and hydroxides) and complexed with 

organic colloids through adsorption yet still remain catalytic. Boyd and Mortland (1990) suggested 

that these organo-mineral systems may provide living environments for viruses and microorganisms, a 

model for enzyme interactions with natural soil and organic matter, and important regulator for 



activities and stabilities of enzymes associated with organic matter and clay-organic matter complexes 

in soils. 

In 2002, Metcalfe and others detected that enzyme-coding genes could be found in specific 

microorganisms and was first to attempt to relate these genes to relative enzyme activity. The 

enzyme-coding genes sequenced included chitinase (Metcalfe et al., 2002; LeCleir et al., 2004; Xiao et 

al., 2005), laccase (Luis et al., 2004) and proteases (Fuka et al., 2008). It was later found that enzyme-

coding genes does not strongly correlate to enzyme activity, which suggested that gene detection do not 

necessarily indicate that is expressed in the environment (Hassett et al, 2009). Genes regulating enzyme 

production can be present in the DNA, but the presence of mRNA transcript is what informs the gene to 

be expressed and thus activate enzyme production. However, other studies contradicted this finding, 

suggesting that gene expression does not explain differences in enzyme activities (Edwards et al, 2011). 

Nonetheless, this indicated that other factors, such as enzyme prolongation and turnover must be 

considered. Further research regarding metatranscriptomics using mRNA and cDNA may offer further 

understanding of microbial enzyme expression in soil (Damon et al., 2012; de Menezes et al., 2012; 

Haichar et al., 2012). Metatranscriptomics studies RNA, which provides an opportunity to gain insight 

into the functionality of microbial communities. It is often assumed that gene expression (transcription 

of DNA into RNA (Fig. 2)) is representative of microbial activity and reflects the response of 

microorganisms to environmental cues (Myrold et al, 2014).  Various studies have discovered that the 

composition of microbial communities based on RNA differs from that based on DNA and concluded 

that the active microbial community is simply a subset of the potentially active microbial community 

(Anderson and Parkin, 2007; Baldrian et al., 2012; Griffiths et al., 2000). The practicality of soil 

metatranscriptomics has yet to be fully developed but has provided insights about microbial functions in 

other complex microbial systems (Poretsky et al., 2010). 

 



 

 

 

 

Figure 2. This figure illustrates the process by which DNA is copied to RNA (transcription), and 

that by which RNA is used to produce proteins (translation). 

In regard to aquatic systems, the earliest enzyme studies were proposed by ecologists who 

recorded the presence of extracellular enzymes during studies of periphytic bacterial cultures in the 

early 1970s (Corpe and Winters, 1972; Daatselaar and Harder, 1974). Later, various extracellular enzyme 

activities were being linked to degradation of organic matter in diverse ecosystems such as marine 

environments (Kobori and Taga, 1979b; Meyer-Reil, 1981, 1983; Hoppe, 1983; Hollibaugh and Azam, 

1983; Lancelot and Billen, 1984; Ammerman and Azam, 1985; Hoppe et al., 1988), lakes (Halemejko and 

Chróst, 1984; Chróst and Overbeck, 1987; Chróst, 1989; Chróst et al., 1989), and rivers (Admiraal and 

Tubbing, 1991; Münster et al., 1992), which lead to a pioneering series of studies estimating litter 

decomposition rates based on extracellular enzyme activities  (Sinsabaugh and Linkins, 1990; Sinsabaugh 

et al., 1992, 1994, 2009; Sinsabaugh and Findlay, 1995). During this time, enzyme studies were 

beginning to focus on wetland ecosystem and the link between enzyme activities and the 

biogeochemical properties of these systems (Pind et al., 1994; Freeman et al., 1995, 1996, 1997, 1998).  

Researchers were beginning to utilize enzymatic analysis to determine rates of soil organic 

matter decomposition and nutrient mineralization (McLatchey and Reddy, 1998; Kang and Freeman, 

1999, 2009; Kominkova et al., 2000; Shackle et al., 2000; Freeman et al., 2004b; Francoeur et al., 2006; 

Jackson and Vallaire, 2007), which lead to an interest in environmental degradation and the utilization of 

enzyme activity as a tool to investigate environmental controls on key decomposition processes. 



Additional studies have examined the effects of an array of environmental conditions on enzymatic 

regulated carbon and nutrient cycling, such as; water level drawdown by climate change or human 

intervention (Freeman et al., 1996, 1997, 1998; Williams et al., 2000; Burns and Ryder, 2001; Corstanje 

and Reddy, 2004; Mentzer et al., 2006; Song et al., 2007); elevated CO2, O3 (Williamson et al., 2010), 

ultraviolet radiation (Thomas et al., 2009), temperature (Fenner et al., 2005, 2006), land use changes (Ye 

et al., 2009; Gao et al., 2010), and metals (Siciliano and Lean, 2002; Duarte et al., 2008).  

Enzymatic analyses were adopted in wetland studies with diverse objectives, for example, 

research on constructed wetlands have considered the effects of wastewater, organic matter, or 

manure additions on enzyme activities (Szogi et al., 2004; Bruland et al., 2009; Dao and Schwartz, 2010; 

Finocchiaro and Kremer, 2010; Yan and Pan, 2010). Enzyme activities are used extensively as a soil 

quality indicator (Rokosch et al., 2009) and have also been evaluated to connect microbial ecology and 

biogeochemical processes (Freeman et al. 1997, Freeman et al. 1998, Kang et al. 1998, Gutknecht et al. 

2006, Drenovsky et al. 2008). 

Interpretation of Soil Enzymes  

    Enzyme activities reflect changes in microbial activities and can be measured and utilized as an 

index of microbiological functional diversity that can include a variety of metabolic processes (i.e. 

nutrient cycling and decomposition).  Because there are a variety of different metabolic process, a 

representative set of enzyme activities that control the key metabolic pathways are required.  A 

commonly used and efficient method to measure enzyme activity is the fluorometric technique that is 

based on 4-methylumbelliferone (MUF) substrates that fluoresce upon enzymatic cleavage allowing the 

amount of product to be measured. Since this method was developed, substrates releasing MUF or 

other fluorescent products (i.e. 7-amino-4-methyl coumarin, 7-AMC) have been extensively used to 

measure the activity of many enzymes, including measuring concurrent activity determination of 

multiple soil enzymes on microplates, mainly developed by Freeman et al. (1995).  



In aquatic and terrestrial systems, enzymes have been utilized as indicators of nutrient cycling, 

most important for carbon cycle being glucosidases, amylase, cellulose, lipase, xylanase, and invertase; 

for the nitrogen cycle, proteases, amidases, urease, and deaminases; for phosphorus -phosphatase; and 

for sulfur – arylsulfatase (Karaca et al., 2010; Riah et al., 2014; Trasar-Cepeda, 2012 Nieder et al, 2008).   

Studies have shown inverse trends with soil depth, as soil depth increases enzyme activity decreases, 

and this has largely due to the correlation between enzyme activity and microbial activity and the 

carbon and organic nitrogen contents in the soil (Lal et al, 2010; Li, 2015). Generally, as soil depth 

increase microbial activity decreases due to limiting conditions such as available nutrients, electron 

acceptors, temperature, etc. Additional studies have utilized enzyme assays to indicate shifts in 

microbial processing between major types of resources within a specific nutrient cycle and therefore 

indicate nutrient limitation (Sinsabaugh and Moorhead, 1994; Schimel and Weintraub, 2003). For 

example, in phosphorus-limited constructed wetlands, bioavailability of P may be regulated by microbial 

mineralization of organic P, through the production of monoesterase (alkaline phosphatase) and 

diesterase (bis-phosphatase) enzymes (Reddy, 2008). As a result, this activity of phosphatase enzymes 

can be utilized as a direct measure of the relative phosphorus mineralization occurring in aquatic 

ecosystems (Sinsabaugh et al. 1993). 

Soil enzymes have frequently been evaluated based on ratio differences within major carbon, 

nitrogen, and phosphorus processing enzyme to provide a better understanding of the microbial 

community response to changing nutrient resources and the relative importance of different nutrients 

(Caldwell, 2005). Various studies have utilized enzyme assays to indicate shifts in microbial processing 

between major types of resources within a specific nutrient cycle (Garcia et al., 1994, Sparling et al., 

1986). Production of enzymes is determined by energy and nutrient resources, thus the production of 

enzymes is determined by the availability of nutrients (Allison et al, 2005). Microbes maintain a 

relatively fixed stoichiometry of cellular components (Cleveland and Liptzin, 2007), and microbes 



produce enzymes targeting specific compounds rich in carbon, nitrogen, and phosphorus in order to 

maintain this internal stoichiometric balance (Sinsabaugh et al, 2008). Studies have shown that there is a 

relationship between stoichiometry of microbial biomass and available nutrients, as these ratios 

increase and critical nutrients like phosphorus and nitrogen decrease, enzyme production will increase 

to acquire more nutrients and vice versa (German et al., 2011; Steinweg, 2013). In addition, multivariate 

techniques have increasingly been utilized to relate soil enzyme activities to microbial community 

structure and physiology (Nannipieri et al, 2002). The interpretation of soil enzymes has been central for 

the development of conceptual models that provide a more inclusive understanding of those key 

processes linking microbial populations and nutrient dynamics (Sinsabaugh and Moorhead, 

1994; Schimel and Weintraub, 2003).  For example, Schimel and Weintraub (2003) built a simple 

theoretical model to incorporate enzyme activity as a function of decomposition rates under carbon and 

nitrogen limited soil conditions and found that microbial growth may be limited by nitrogen. 

Conclusion 

Soil enzymes are key players of biochemical processes in both terrestrial and aquatic 

ecosystems. The processes include decomposition, nutrient cycling, and microbial activity. These soil 

enzyme activities are soil function indicators that that provide insight to reaction rates for important soil 

processes, soil productivity, microbial activity, and inhibiting effects of pollutants, etc. (Srinivasroa, 

2017). These soil enzymes are sensitive early warning indicators of soil management changes, and are 

very important for measuring soil quality and thus maintaining ecology integrity in both terrestrial and 

aquatic systems. Future determination of how to measure and interpret soil enzyme functional diversity 

(i.e. specific substrates to explore diversity between and within nutrient cycle) will depend on the nature 

of questions on topics like the linkages between resource availability, microbial community structure 

and function, and ecosystem processes that require further exploration and research.  

https://www.sciencedirect.com/science/article/pii/S0031405605000569#bib55
https://www.sciencedirect.com/science/article/pii/S0031405605000569#bib55
https://www.sciencedirect.com/science/article/pii/S0031405605000569#bib53


Table 1. Role of soil enzymes 

 

  

 

 

 

 

 

 

 

 

 

 

Enzymes Substrate Significance Predictor of Soil Function 

Phosphatase Phosphorus Plant available P Nutrient cycling 

Beta glucosidase Carbon compounds Energy for 
microorganisms 

Organic matter decomposition 

FDA Hydrolysis Organic Matter Carbon and 
various nutrients 

Organic matter decomposition and 
nutrient cycling 

Amidase Carbon and nitrogen 
compounds 

Plant available 
NH4

+ 

Nutrient cycling 

Urease Nitrogen (urea) Plant available 
NH4

+ 
Nutrient cycling 

Sulfatase Sulfur 
 

Plant available S Nutrient cycling 
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