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1. Introduction 
The State of Florida has experienced significant and prolific land cover change in recent 

decades, and it is widely accepted and understood that changes in land cover alters streamflow. 
Changes in stream flow are largely associated with the conversion of pervious surfaces to 
impervious surfaces through urbanization, but changes in streamflow are also observed through 
the conversion of other types of land cover, such as the conversion of forested land to 
agricultural land. The degree to which streamflow is influenced by conversion of different 
landcover types at various spatial scales can be quantified using complex hydrological models, 
but rarely this can be done in a simplistic way useful for applied contexts (e.g., contractors, 
environmental consultants). The goal of this study was to evaluate a series of basic equations that 
can be used to estimate changes in streamflow due to land cover change within a watershed. 
Plainly, I seek to answer questions like: how much will streamflow increase if I convert 5% of 
the forested land within my watershed to urban? Specifically, this project evaluates how best to 
estimate streamflow discharge in relation to precipitation, land cover, and other watershed 
dynamics like groundwater flow. This project builds upon and continues the undergraduate 
research work of John Flores (2020-2021) who processed and organized the land cover, 
watershed imperviousness, precipitation, and streamflow data for Florida watersheds from 1996-
2020 used here. This study is Part 2 of 3 in a collaborative effort between John (completed Part 
1), myself (Part 2), and my adviser, Sam Smidt (Part 3). Collectively, we seek to publish this 
combined work in 2022-23. Ultimately, the goal of this study is to provide a quick and easy 
mechanism to assist land planners and land managers with flood mitigation planning, 
environmental land management, and urban sustainability and resiliency by developing a simple 
predictive equation developed from openly sourced data. 
 
2. Study Area Background 
 This study first evaluated watershed scales versus stream gage sites (Figure 1), where 
gage sites were selected as those with continuous data collected since at least 1996 across a 
binned range of drainage areas (e.g., 10 from small drainage areas, 10 from medium, etc.; Flores 
2021). 
 

 

 
 HUC levels for each gage were then set where the selected gage was located at the outlet 
of the watershed, so all streamflow based on the hydrological dynamics within a watershed 
would pass through the gage site (Figure 2). For example, in Figure 2, the stream gage would not 
be in a location conducive for streamflow analysis at HUC-8 scale since its position is not near 

Figure 1. Targeted USGS stream gages within Florida overlaying HUC-10 watershed 
boundaries for reference (from Flores, 2021). 
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any particular outlet of the watershed. However, at a HUC-10 scale, the stream gage is 
positioned near the discharge outlet of a watershed, which indicates that it would likely capture 
the total discharge from within the watershed (Flores, 2021). In total, 20 out of the 81 stream 
gauges were equally selected within HUC-10 and HUC-12 watersheds within the State of 
Florida. 

 
 

 
 Conceptually, this project assumes streamflow at the watershed outlet (gage site) is a 
function of precipitation across varying land cover with distinct imperviousness. I then started 
with the multiple linear regression equation (eq. 1):  
 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 𝑋𝑋𝑖𝑖1 + ⋯+ 𝛽𝛽𝑝𝑝 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖  (eq. 1) 
 

where the dependent variable, 𝑌𝑌𝑖𝑖, is gage streamflow, 𝛽𝛽 is an imperviousness coefficient for land 
cover, 𝑋𝑋. A main question then becomes: where does precipitation fit within this equation? 
Furthermore, how are precipitation and streamflow related so that the hydrological variability 
across changing land cover areas (e.g., urban, forest, wetland) can be captured (e.g., some 
watersheds have 5% urban and others have 25%, and these dynamics heavily influence runoff 
and subsequent streamflow)? 
 
3. Equation Testing 
3.1. Rational Equation Development 

The Rational Equation is used by hydrologists to predict peak stream discharge for a 
drainage area during the peak-period of a precipitation event. The Rational Equation proves that 
stream discharge (𝑄𝑄) is proportional to land cover type (i.e., runoff coefficient), rainfall intensity, 
and watershed area. The Rational Equation is written as 𝑄𝑄 = 𝑐𝑐𝑐𝑐𝑐𝑐, where 𝑄𝑄 is peak discharge (in 
cfs), 𝑐𝑐 is the runoff coefficient, 𝑖𝑖 is rainfall intensity (in inches/hour) and 𝐴𝐴 is the drainage area 
(in acres). I then expanded this equation, modeled after the multivariate equation, to isolate 
individual land cover classifications (eq. 2):  
 

𝑆𝑆
𝐴𝐴∗𝑃𝑃

= 𝑚𝑚1�𝐴𝐴𝑙𝑙𝑙𝑙1 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙1� + 𝑚𝑚2�𝐴𝐴𝑙𝑙𝑙𝑙2 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙2�… + 𝑏𝑏  (eq. 2) 

Figure 2. Stream gage positioning at separate HUC scales in ArcMap (from Flores, 2021). 
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where, 𝑆𝑆 is peak streamflow measured in volume per time at each stream gage, 𝑃𝑃 is precipitation 
across a watershed measured in depth per time, 𝐴𝐴 is the total watershed area, 𝑚𝑚𝑥𝑥 is the predictive 
coefficient of streamflow influence, 𝐴𝐴𝑥𝑥 represents the percent site area of a land cover class, 
𝑀𝑀 represents an average impervious surface coefficient of the land cover class, 𝑙𝑙𝑐𝑐𝑥𝑥. The right 
side of the equation quantifies a “sum of parts” function (∑𝑥𝑥), which accounted for different 
land cover types and coverage area (totaling 100%) within the selected watershed. In comparison 
to the Rational Equation, the 𝑆𝑆 variable in Eq. 2 represents the 𝑄𝑄 variable in the Rational 
Equation, and the 𝐴𝐴 variable in Eq. 2 represents the 𝐴𝐴 variable in the Rational Equation, and the 
𝑃𝑃 variable in Eq. 2 represents the 𝑖𝑖 variable in the Rational Equation. The Eq. 2 variables, 𝐴𝐴 and 
𝑃𝑃, have been divided to the left side of the equation to yield a dependent variable of  𝑆𝑆

𝐴𝐴 ∗ 𝑃𝑃
. This 

could also be accomplished using the Rational Equation by dividing 𝑖𝑖 and 𝐴𝐴 to the left side of the 
equation and leaving 𝑐𝑐 (runoff coefficient) on the right side of the equation, yielding equation 3:  
 

𝑄𝑄
𝑖𝑖 ∗ 𝐴𝐴

= ∑𝑐𝑐  (eq. 3) 
 
This allows for calculation of the runoff coefficient 𝑐𝑐 using stream discharge (𝑄𝑄), rainfall 
intensity (𝑖𝑖), and drainage area (𝐴𝐴) data, like in Eq. 2; however, the Rational Equation only 
solves for peak discharge using peak rainfall data, whereas Eq. 2 is intended to measure changes 
in streamflow from changes in land cover. The water-index (left side of the equation) in Eq. 2, 
( 𝑆𝑆
𝐴𝐴 ∗ 𝑃𝑃

), represents stream discharge normalized by the product of precipitation and the watershed 
area. Discharge was normalized to the watershed area to account for the various sizes of 
watersheds and the difference in resultant streamflow.  
 
3.2. Equation Assessment 
Eq. 2. Assessment 1 

The calculations of the dependent (water-index; left side of the equation) and independent 
variables (right side of the equation) for Eq. 2 were assessed over a random 3-day period in 
August of 2001 and 2006. Precipitation was measured as cumulative rainfall (m/3-days) over the 
3-day interval and streamflow (m3/3-days) was extrapolated from peak discharge (m3/s) during 
the same 3-day interval using dimensional analysis and converting seconds into 3-days. These 
values were input into the linear regression model to predict the constant coefficients (𝑚𝑚𝑥𝑥) and 
slope-intercept (𝑏𝑏) values, using R-squared as a gut-check measure of effectiveness where half of 
the data was used to build the model and predicted against the other half (Table 1). 
 

Table 1. R-Squared Values for Linear Regression of Equation 2 – Assessment 1 
Period R-Squared Value 
3-Day 0.679 

 
The R-squared value for Eq. 2 - Assessment 1 yielded a decent statistical fitness between 

the independent and dependent variables assumed in Eq. 2 given highly variable precipitation 
and the random selection of days.  
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Eq. 2. Assessment 2 
Based on the favorable 3-day results, I then decided to evaluate different time periods 

that may better capture the hydrology of the analyzed watersheds. I then re-calculated the 
equation using data over a 1-day, 5-day and 7-day periods to determine trends in fitness over 
longer time intervals. Precipitation was measured as cumulative rainfall (m/day) over the 1-day, 
5-day, and 7-day period and streamflow (m3/day) was extrapolated from peak discharge (m3/s) 
during the same 1-day, 5-day, and 7-day periods using dimensional analysis and converting 
seconds into 1-day, 5-day, and 7-day periods. These values were input into the linear regression 
model to predict the constant coefficients (𝑚𝑚𝑥𝑥) and slope-intercept (𝑏𝑏) values, and R-squared 
values were reported (Table 2).  
 

Table 2. R-Squared Values for Linear Regression of Equation 2 – Assessment 2 
Period R-Squared Value 
1-Day 0.694 
5-Day 0.784 
7-Day 0.791 

 
The R-squared value for Eq. 2 - Assessment 2 yielded stronger statistical fitness than Eq. 2 – 
Assessment 1, suggesting that water flow in response to a precipitation event can take longer than 
3 days to make it through the watershed and to the gage site outlet.  
 
Eq. 2. Assessment 3 
 Given the improved correlation, I then continued to expand the time intervals to find the 
peak R-squared, which is likely to best represent the hydrological timescales of the watershed 
dynamics. Data were then processed in daily intervals until the R-squared appeared to plateau 
(Table 3).  

Table 3. R-Squared Values for Linear Regression of Equation 2 – Assessment 3 
Period R-Squared Value 
1-Day 0.694 
2-Day 0.764 
3-Day 0.679 
4-Day 0.628 
5-Day 0.784 
6-Day 0.710 
7-Day 0.791 
8-Day 0.722 
9-Day 0.723 
10-Day 0.723 

 
Collectively, the 5 to 7-day range generated the strongest correlations (R-squared of near 0.8).  
 
3.3. Other Equation Attempts 

I also tested a simple quotient relationship between streamflow and precipitation (eq. 4): 
 

𝑆𝑆
𝑃𝑃

= 𝑚𝑚1�𝐴𝐴𝑙𝑙𝑙𝑙1 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙1� + 𝑚𝑚2�𝐴𝐴𝑙𝑙𝑙𝑙2 ∗ 𝑀𝑀𝑙𝑙𝑙𝑙2�… + 𝑏𝑏  (eq. 4) 
 
where, 𝑆𝑆 is peak streamflow measured in volume per time at each stream gage, and 𝑃𝑃 is 
precipitation across a watershed measured in depth per time. The right side of the equation 
combined multiple variables quantifying a “sum of parts” function (∑𝑥𝑥), which accounted for 
different land cover types and coverage area (totaling 100%) within the selected watershed. 
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Here, 𝑚𝑚𝑥𝑥 is the predictive coefficient of streamflow influence, 𝐴𝐴 represents the percent site area 
of a land cover class, 𝑀𝑀 represents an average impervious surface coefficient, 𝑙𝑙𝑐𝑐𝑥𝑥 represents each 
unique land cover type, and 𝑏𝑏 represents a constant term. The multivariate linear regression 
model was then used to calculate the predictive coefficients (𝑚𝑚𝑥𝑥) and the slope-intercept (𝑏𝑏). 
Conceptually, eq. 4 suggests there is a predictive relationship between peak streamflow and 
precipitation, and this relationship is dependent on the land cover classifications within the 
watershed.   
 
Eq. 4. Assessment 1 

Here, precipitation was measured as cumulative rainfall (m/3-days) over the 3-day 
interval and streamflow (m3/3-days) was extrapolated from peak discharge (m3/s) during the 
same 3-day interval using dimensional analysis and converting seconds into 3-days, and R-
squared again measured the goodness of fit (Table 4). However, this equation attempt had poor 
predictive performance and did not well-represent the watershed hydrology.  

 
Table 4. R-Squared Values for Linear Regression of Equation 4 - Assessment 1 

Period R-Squared Value 
3-Day 0.04 

 
Eq. 4. Assessment 2 
Using the same equation, precipitation was again measured as cumulative rainfall (m/3-days) 
over a 3-day interval; however, streamflow (m3/3-days) was measured as the change in stream 
flow (∆𝑆𝑆) between day 1 and day 3. These values were input into the linear regression model to 
predict the constant coefficients (𝑚𝑚𝑥𝑥) and slope-intercept (𝑏𝑏) values, which demonstrated a much 
stronger correlation (Table 5).  
 

Table 5. R-Squared Values for Linear Regression of Equation 4 - Assessment 2 
Period R-Squared Value 
3-Day 0.699 

 
Eq. 4. Assessment 3 
Lastly, I then expanded the temporal range of this approach to evaluate best goodness of fit 
(Table 6). Here, I again found reasonably high R-squared values, but they were still less than the 
rational equation approach. Like the Rational Equation approach, the R-squared values peaked in 
the 5-day to 7-day period, providing further support of a correlation in streamflow response at 
the 5-day to 7-day range. 
 

Table 6. R-Squared Values for Linear Regression of Equation 4 – Assessment 3 
Period R-Squared Value 
1-Day 0.601 
3-Day 0.699 
5-Day 0.765 
7-Day 0.759 

 
4. Limitations 

For applied purposes, the results from this study are largely specific to the state of 
Florida. For example, the residence time of water within the watersheds seemed to be somewhere 
in the 5-to-7-day range. However, Florida is a flat landscape with sandy soils. Residence time 



7 

would likely change based on topography and soil type, which means the initial steps of data 
collection, data processing, and equation evaluation would need to be completed for each region 
outside of Florida. Likewise, precipitation patterns are widely variable throughout the country 
which can also drive differences from these results.  
 Additionally, this study focuses on peak streamflow as a direct alignment with the end-
goal of reducing flooding risk (e.g., increase streamflow = higher flood likelihood). Peak 
streamflow is a threshold value for management decisions but may not generate the highest 
correlations when assessing the links between streamflow, precipitation, and land cover. For 
example, using total streamflow on the left side of the equation may generate stronger results.  

Despite these limitations, it is believed that the results of this study provided a strong 
correlation between changes in landcover and resultant changes in streamflow, which will 
provide a framework in developing a simple predictive equation that utilizes open-source data to 
assist land planners and land managers with flood mitigation planning, environmental land 
management, and urban sustainability and resiliency. 
 
5. Conclusion 
 This ongoing study seeks to develop a simple, “back-of-the-envelope” formula for 
estimating changes in streamflow relative to changes in land cover during land development 
projects. Here, I work to identify the most effective arrangement of streamflow, precipitation, 
and land cover variables that generate the strongest correlation and subsequent predictive power 
for applied settings. Based on these results, I conclude: 

1. Blending a multivariate framework into the Rational Equation provides a 
considerably strong method for estimate streamflow changes relative to changes in 
land cover.  

2. Capturing a range of residence times within the watershed is critical for identifying 
the strongest variable approach and equation framework.  

3. When trialing equation designs, there appears to be a “yes/no” result instead of a 
gradual deviation away from being accurate (i.e., an equation is effective or it is not 
effective; there were no mediocre equations).   
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