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Introduction 

Mercury in the South Florida aquatic ecosystem originates from local, regional and global 

sources (Axelrad et al., 2011). Many anthropogenic-based sources include emissions from 

medical waste incinerators and coal-fired and chlor-alkali facilities. When mercury-containing 

materials are burned or incinerated, mercury is released in gaseous and particulate forms that 

eventually deposit onto water bodies and the terrestrial surface. In wetlands, sulfate-reducing 

bacteria (SRB) are the primary organisms that convert inorganic mercury to methyl-mercury 

(MeHg). MeHg, the most toxic form of the element, bioaccumulates in the food chain and 

threatens the health of wildlife and humans (Figure 1).  

In the late 1980s and early 1990s, various states and the federal government imposed limits on 

mercury emissions from medical and municipal waste incinerators in an effort to reduce 

mercury deposition to water bodies within the continental United States, including the 

Everglades. Studies have produced convincing evidence that controls on emissions from waste 

incinerators, combined with a reduction in the use of mercury in household items, have 

resulted in a sharp decline of mercury levels in the Everglades (Atkeson et al., 2005). Research 

indicates that mercury dropped sharply after 1994, reflecting the delayed effect of emissions 

regulations (Atkeson et al., 2005; Gabriel et al., 2009). However, it is not clear whether the drop 

of mercury in fish is due directly to reductions in atmospheric mercury deposition and/or 

limiting biogeochemical processes in wetlands.  

Objective 

The objective of this project is to evaluate temporal trends of mercury in multiple fish species 

representing three distinct trophic levels within the Everglades Protection Area (EPA) (Figure 2). 

This information will be used to validate the downward trend in mercury (as reported in 

Axelrad et al. 2011) that has been observed since limits on incineration emissions were 

imposed. To support these analyses, an additional investigation will be performed to assess the 

cause(s) for the observed trends in fish mercury concentrations. This analysis includes 

evaluating the relationship between mercury in fish and surface water sulfate concentrations 

over spatial and temporal scales.  
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Hypothesis 

Mercury concentrations have decreased in all fish species since the beginning of the period of 

record (POR). Sulfate concentrations in surface water are spatially correlated with mercury in 

fish.  

 
 
 

 
 

Figure 1. Mercury Cycling in an Aquatic Ecosystem (figure from USGS, 2011) 
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Figure 2. The Everglades Protection Area consists of Water Conservation Areas 1, 2A, 2B, 3A 
and 3B, and Everglades National Park 
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Data Description  

This project focuses on data collected from 1998 to 2010 by the South Florida Water 

Management District (District). As a condition of its operating permits, the District is required to 

monitor mercury in fish tissue and sulfate in surface water at various locations throughout the 

EPA. All data used for this project was obtained from the District’s DBHydro database. Surface 

water sulfate and mercury in fish monitoring locations and quantities have varied considerably 

over time. In addition, mercury and sulfate monitoring has not always occurred concurrently at 

common stations. Mercury and sulfate monitoring data were paired for correlative analyses 

based on spatial and temporal proximity (Table 1). Hydrologic relevance was also a 

consideration for pairing mercury and sulfate monitoring locations.  

 

THg in Fish  
Monitoring Stations 

Surface Water Sulfate 
Monitoring Stations 

LOXF4 LOX11 

CA2NF 2AN1 

WCA2F1 WCA2F1 

WCA2U3 CA215/U3 

HOLYBC G372 

ROTENC ROTA4 

CA33ALT CA33 

CA35ALT CA38 

CA3F1 S140 

CA315 CA311 

CA3F2 S12A 

L67F1 S12D 

 
Table 1. Table showing how THg in fish and surface water sulfate monitoring locations were 
paired for correlative analyses. 
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Summary of the Monitoring Program 

Preyfish  

Using a dip net, a grab sample of 100 - 250 mosquitofish (Gambusia spp.) are collected at each 

monitoring station (Figure 3) on an annual frequency. Mosquitofish are selected as a 

representative indicator of short-term, localized changes in water quality because of their small 

range, short life span, and widespread occurrence in the Everglades. Mosquitofish become 

sexually mature at approximately three weeks of age and have an average life span of only four 

to five months (though some individual females may live up to 1.5 years); the life span of males 

is shorter than females (Haake and Dean, 1983; Haynes and Cashner, 1995; Cabral and 

Marques, 1999). After collection, the mosquitofish are homogenized and each sample is 

analyzed for total mercury (THg).  

 

More than 85 percent of the mercury found in the muscle tissue of fish is in the methylated 

form (Grieb et al., 1990; Bloom, 1992). Therefore, the analysis of fish tissue for THg, which is a 

more straightforward and less costly procedure than the analysis for MeHg, can be interpreted 

as being equivalent to the analysis of MeHg.  

 

Secondary Predator Fish  

Up to 20 sunfish (Lepomis spp.) are also collected annually at the same interior marsh sites 

using electroshocking techniques. Sunfish are thought to have an average life span of four to 

seven years in the wild. Each whole fish is analyzed for THg. Sunfish are prevalent in the 

Everglades and are the preferred prey for a number of fish-eating species; therefore, this 

species was selected as an indicator of mercury exposure for wading birds and other fish-eating 

wildlife.  

 

Top-Predator Fish  

Using electroshocking techniques, up to 20 largemouth bass (Micropterus salmoides) (LMB) are 

also collected annually at the same interior marsh sites; the fillets are analyzed for THg. 
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Largemouth bass are long-lived; therefore, LMB were selected as an indicator of potential 

human exposure to mercury.  

 
Tissue concentrations in each of these three monitored fish species reflect ambient MeHg 

levels; i.e., their exposure is a function of a combination of factors, including body size, age, 

rate of population turnover, and trophic position. 

 
Mosquitofish should respond rapidly to changing ambient MeHg concentrations due to their 

small size, lower trophic status, short life span, and rapid population turnover. Conversely, 

sunfish and LMB should take a greater amount of time to respond, in terms of tissue 

concentrations, to changes in ambient MeHg availability. Most importantly, sunfish and LMB 

represent exposure at higher trophic levels with a requisite time lag for trophic exchange. The 

key is to use these species-related differences to better assess MeHg availability within the 

system.  

 
Surface Water 

On a quarterly frequency, 125-milliliter filtered (0.45 m) grab samples of water are collected at 

water management structures and interior marsh stations and analyzed for sulfate (Figure 4). 
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Figure 3. Collection sites for monitoring THg levels in mosquitofish (Gambusia spp.), sunfish 
(Lepomis spp.), and largemouth bass (Micropterus salmoides).  

 

MERCURY IN FISH MONITORING LOCATIONS 
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Figure 4. Surface water sulfate monitoring locations. 
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Statistical Analysis 

Data heteroscedasticity was evaluated using the Shapiro-Wilkinson normality test. Pearson 

correlation was used for parametric data and Spearman correlation for non-parametric data.  

Statistical significance was considered ≥95% confidence. Interpretability of residue mercury 

levels in animals can be problematic due to the confounding influences of age or species. 

Therefore, for comparative purposes, fish data were standardized by age and length where 

appropriate.   

 

Results and Discussion 

 

Temporal Trends of Mercury in Fish in the EPA 

Axelrad et al. (2011) report a 62 percent decline in mercury levels in largemouth bass across the 

EPA following government imposed limits on mercury emissions from medical and municipal 

waste incinerators, with annual median THg concentrations frequently exceeding 1 mg/kg prior 

to 1995 (Figure 5). Results from the present study validate this reported decline of mercury in 

largemouth bass with a median annual concentration exceeding 1 mg/kg only two times since 

1998. These exceedances were observed at station L67F1 in 1999 (1.1 mg/kg) and 2003 (1.2 

mg/kg). 

 

 

Figure 5. Annual pooled summaries of mercury concentrations in largemouth bass in the EPA 
1989–2009 (Axelrad et al., 2011) 
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Axelrad et al. (2011) report median concentrations in largemouth bass stabilized by 1998 with 

little variation since that year. Results from this study reveal a continued decline in mercury 

levels since 1998, however, few of those declines are statistically significant. Over the entire 

POR, Spearman correlation analyses performed using annual median THg concentrations 

indicate a decline in mosquitofish THg levels at eleven stations, with four of those stations 

showing statistically significant decreases: LOXF4 (ρ=-0.847, p= 0.001, n=11 years), CA2NF (ρ=-

0.758, p= 0.001, n=10 years), CA3F2 (ρ=-0.866, p= 0.001, n=12 years) (Figure 6), and L67F1 (ρ=-

0.606, p=0.033, n=12 years). THg declines were observed in sunfish at eight stations. Only one 

of those declines, station CA3F2, was statistically significant (ρ=-0.636, p=0.024, n=12 years) 

(Figure 7). THg declines in largemouth bass were observed at seven stations, but none were 

statistically significant.  A few stations reveal consistently low (e.g., WCA2F1 and LOXF4) or high 

(L67F1) mercury levels; however, there does not appear to be any definitive spatial trend or 

concentration gradient. 
 
 

 
 

 
 
Figure 6. Annual median THg concentrations in mosquitofish at station CA3F2 
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Figure 7. Annual median THg concentrations in sunfish at station CA3F2 
 

 

USEPA (2001 and 2007), Kalla et al. (2010), and Krabbenhoft et al. (2010) attribute the decline 

in mercury bioaccumulation not only to reduced atmospheric inputs of mercury, but also to 

declines in sulfate concentrations in the EPA during the late 1990s. Results from the current 

study show a continued decline in sulfate concentrations at seven of twelve stations examined: 

LOX11 (ρ=-0.889, p= 0.001, n=13) (Figure 8), WCA2F1 (ρ=-0.804, p= 0.001, n=17) (Figure 9), 

CA215 (ρ=-0.611, p=0.015, n=15), CA33 (ρ=-0.796, p= 0.001, n=22), CA38 (ρ=-0.535, p=0.026, 

n=17) (Figure 10), CA311 (ρ=-0.727, p= 0.001, n=17) (Figure 11), and S12A (ρ=-0.558, p=0.006, 

n=23) (Figure 12). 

 

Only two of the twelve paired THg in fish and surface water sulfate monitoring locations 

showed a statistically significant decline in both THg and sulfate: LOXF4/LOX11 and 

CA3F2/S12A. 
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Figures 8 - 10. Annual median sulfate concentrations at various locations within the EPA. 
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Figures 11 and 12. Annual median sulfate concentrations at various locations within the EPA. 

 

In aquatic systems, methylation of inorganic mercury is mediated largely by SRB (Gilmour et al., 

1992; Gilmour et al., 1998; Jeremiason et al., 2006). Laboratory and field experiments show 

that sulfate stimulates SRB activity and methylmercury production. Declining sulfate 

concentrations have likely contributed to the rapid declines in MeHg production and 

concomitant declines in fish THg concentrations. However, other factors affecting temporal and 

spatial patterns of MeHg production and bioaccumulation in fish are also likely important in 

explaining the variations in mercury bioaccumulation observed since 1998. 
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Relationship Between Mercury in Fish and Surface Water Sulfate Concentrations 

Spearman correlation analyses indicate that for the POR, there is no significant linear 

relationship between THg in fish and surface water sulfate concentrations. This is true for each 

of the three trophic levels of fish examined: mosquitofish (ρ= -0.0882, p= 0.764, n=13), sunfish 

(ρ= -0.14, p= 0.629, n=13), and largemouth bass (ρ= -0.118, p= 0.682, n=13). However, plots 

developed with annual median concentrations of THg and sulfate for each monitoring station 

suggest a nonlinear relationship exists (Figure 13).  

 
Results of this study indicate that mercury bioaccumulation increases with sulfate 

concentrations up to 10 mg/L (Figures 13 and 14). This supports laboratory experiments that 

show methylmercury production increases with sulfate concentrations up to 10 mg/L and 

declines when porewater sulfide exceeds 0.6 mg/L (Gilmour et al., 1992). Sulfate stimulates SRB 

activity and methylmercury production, but as it is reduced to sulfide, the sulfide accumulates 

in porewater and binds with inorganic mercury limiting what fractions are available for 

methylation (Cleckner et al. 1998). This may explain the observed decrease in mercury 

bioaccumulation when surface water sulfate exceeds 10 mg/L. The dual effect of sulfur on 

methylation results in maximum MeHg production, and ultimately bioaccumulation, in so-called 

"Goldilocks” zones where sulfate and sulfide levels are just right for mercury methylation. 

 
Mercury concentrations in each of the three trophic levels of fish examined show a subsequent 

upward trend when sulfate concentrations exceed 20 mg/L. This subsequent increase was not 

reported by Gilmour et al. (1992) or Pollman (2008) and may hint to a complex relationship 

where the magnitude of methylmercury accumulation within the Everglades varies as 

consequence of biogeochemical factors other than sulfur. Alternatively, it may simply be an 

artifact of the data; this subsequent increase disappears in plots showing the 25th and 75th 

percentiles (Figure 14). Polynomial regression equations developed for each of the three 

trophic levels of fish examined suggest that only 4-8 percent of the variation of THg in fish is 

due to surface water sulfate concentration. The low R2 values indicate that these regression 

equations would not serve as strong tools for predicting THg bioaccumulation as a function of 

surface water sulfate concentrations. 
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Figure 13. Mercury concentrations in mosquitofish, sunfish, and largemouth bass in the EPA as 
a function of surface water sulfate concentrations. 
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Figure 14. Plots showing 25th and 75th percentile (whiskers) concentrations of mercury in fish as 
a function of surface water sulfate concentrations. 
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While freshwater wetlands typically have low sulfate concentrations (Wetzel, 2001), surface 

water sulfate concentrations in the Everglades are high due to major inputs from the 

Everglades Agricultural Area (EAA) (Orem, 2004). Sulfate levels in marshes closest to the EAA 

often exceed 100 times historical levels (Bates et al., 2002; Gilmour et al., 2007a; Weaver et al., 

2007). Sources of sulfur to EAA canals include wet and dry atmospheric sulfur deposition 

(though atmospheric deposition is a minor input), agricultural application, and soil oxidation in 

the EAA (Gabriel et al., 2010a). Soil oxidation occurs when soils are drained (e.g., drainage that 

is anthropogenically induced for agricultural purposes or occurs naturally during drought) or as 

a result of fire. The USGS and the Smithsonian Institution have jointly examined the impacts of 

dry/rewet cycles on the biogeochemistry of the Everglades, in both field and laboratory studies 

(Krabbenhoft and Fink, 2001; Gilmour et al., 2004). Results of these studies show that drought 

or fire followed by rewet causes: (1) oxidation of organic soils, converting reduced sulfur in 

sediments (organic sulfur and metal sulfides) to sulfate, (2) remobilization of this sulfate into 

the water column following rewetting, and (3) stimulation of microbial sulfate reduction and 

MeHg production from the remobilized sulfate. 

 
Field surveys have shown that sulfate stimulation of MeHg production and sulfide inhibition of 

MeHg production explain the variations of MeHg observed in soils and fish across the 

Everglades ecosystem (Gilmour et al., 1998; Benoit et al., 2003; Gilmour et al., 2007b). These 

variations may also result from other biogeochemical factors that influence mercury availability, 

methylation, and bioaccumulation. 

 
Other Biogeochemical Factors Affecting Mercury Methylation 

Mercury methylation is extraordinarily effective in the Everglades not only due to the 

availability of sulfate, but also the large pool of readily available dissolved organic matter (DOC), 

and significant mercury source input from atmospheric deposition (Gilmour and Krabbenhoft, 

2001; Renner, 2001; Bates et al., 2002). These constituents, as well as pH, have a strong 

influence on mercury availability and methylation in aquatic systems. Increasing the acidity of 

the water and/or the DOC content enhances the mobility and availability of mercury in the 

environment, making it more likely to enter the food chain. Hydrophobic acids contained in 
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DOC significantly increase the overall solubility and thus mobility of mercury (Ravichandran et 

al., 1998). Another factor contributing to the high levels of MeHg in the Everglades is the large 

expanse of wetland area with anoxic soils that support microbial methylation of mercury. 

 
Conclusion 

Results from this study 1) validate the reported decline of mercury in the Everglades following 

government imposed limits on mercury emissions from medical and municipal waste 

incinerators and 2) suggest mercury concentrations in Everglades fish has a nonlinear 

relationship with surface water sulfate concentrations.  

 
Mercury concentrations in fish declined at only a few of the twelve stations examined for the 

POR (i.e., four stations for mosquitofish, one station for sunfish, and zero stations for 

largemouth bass). The POR for this study begins in 1998, precisely when mercury 

concentrations in fish stabilized within the EPA. Nonetheless, this study does confirm that 

mercury concentrations in largemouth bass are significantly less now than they were prior to 

and shortly after the implementation (late 1980s – early 1990s) of government imposed limits 

on mercury emissions. 

 
Sulfate concentrations in surface water have a nonlinear spatial correlation with mercury in 

fish. This is true for each of three trophic levels of fish examined. Plots revealed characteristic 

increases in mercury bioaccumulation as surface water sulfate concentrations approached 10 

mg/L. This increase was followed by a steady decline in mercury bioaccumulation, reflecting the 

dual effect of sulfur on MeHg production in "Goldilocks” zones where sulfate and sulfide levels 

are just right for mercury methylation and, ultimately, bioaccumulation. Mercury 

concentrations in each of the three trophic levels of fish examined showed a subsequent 

upward trend when sulfate concentrations exceeded 20 mg/L. This subsequent increase may be 

a reflection of a complex relationship where the magnitude of methylmercury accumulation 

within the Everglades varies as consequence of biogeochemical factors other than sulfur. Plots 

also revealed that sulfate accounts for 4-8% of the variability in THg concentrations in fish. 
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Although long-term monitoring of mercury concentrations in fish conducted in the EPA has 

shown significant declines in mercury bioaccumulation, hot spots exist and humans and fish-

eating wildlife continue to be at risk due to mercury exposure (Gabriel et al., 2010a and 

Rumbold et al., 2008). In order to decrease the risk of exposure to toxic MeHg, factors 

promoting methylation need to be addressed. Reductions in the amount of wetland area are 

obviously not consistent with restoration goals, although minimizing the occurrence of 

dry/rewet cycles could reduce spikes in MeHg production. Reducing DOC could reduce the 

bioavailability of mercury for methylation, but reducing DOC is not realistic in a peat-forming 

environment like the Everglades. Since controls on emissions from waste incinerators were 

imposed, local sources of mercury emissions have declined by approximately 90% (Atkeson, 

2005). Because most of the remaining atmospheric mercury deposition on the Everglades is 

from long-range atmospheric transport originating outside the United States, further reductions 

in atmospheric input of mercury to the Everglades would require international cooperation. 

This leaves the control of sulfate inputs as the most feasible option for reducing MeHg 

production and bioaccumulation in the Everglades.  

 
To effectively manage issues linked to elevated mercury and sulfur concentrations, dedicated 

research is needed to determine the causes of mercury hot spots and the sources, fate, and 

transport of sulfur in the Everglades (Gabriel et al., 2010b). Results of future research may 

warrant changes to water management operations and expand the current scope of water 

quality improvement efforts.   
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