Publications & Patents-listed by author

 


Our research team has been very productive in publishing referred articles in highly reputable scientific journals.
Publications with
can be down loaded as pdf files.

I           Arsenic hyperaccumulation by Chinese Brake fern (72)

II         Phosphate-induced metal immobilization in contaminated soils (22)

III        Metal background concentrations in Florida soils (11)

IV        Lead chemistry in shooting range soils (9)

V         Papermill ash and sludge application in soils (12)

VI        Metal chemistry in soils (12)

VII       Contaminant and colloid transport (8)

VIII     Metal accumulation by plants (8)

IX        Organic contamination in the environment (8)

X         Digestion methods for metal analysis in soils (2)

XI        Phosphate background concentrations in Florida soils (2)

XII       CCA treated woods (2)


 List of Referred Articles

·       By author (alphabetical order)

·       By year (reverse chronological order)

 

I        Arsenic hyperaccumulation by Chinese Brake fern (72)-arranged by year

Year 2011 (2)

72       images/PDF.gif  Natarajan, S, R.H. Stamps, L.Q. Ma, U.K. Saha, D.Hernandez, Y. Cai, E.J. Zillioux.  2011.

Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: Effects of frond harvesting regimes and arsenic levels in refill water

J. Haz. Mat.  185:983–989.

71       images/PDF.gif  S. Tu, L.Q. Ma, and B. Rathinasabapathi.  2011.  
           Characterization of phytase from three ferns with differing arsenic tolerance
           Plant Physiology and Biochemistry.  49:146-150.

Year 2010 (7)

70       images/PDF.gif  Cao, X. L.Q. Ma, and A. Shiralipour.  2010. 

Composting As-rich biomass of hyperaccumulator Chinese Brake Fern (Pteris vittata L.): mass reduction and arsenic transformation. 

Environ Sci Pollut Res.  17:586–594.

69       images/PDF.gif  Huang, A., M. Teplitski, B. Rathinasabapathi and L.Q. Ma.  2010. 

Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata L. 

Canadian J. Microbiology.  56: 236–246.

68       images/PDF.gif  Mathews, S., L.Q. Ma, B. Rathinasabapathi, S. Natarajan, and U.K. Saha.  2010.

Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L

           Bioresource Technology.  101: 8024–8030.

67          images/PDF.gif  Santos, J.A.G., M.I.S. Gonzaga, and L.Q. Ma.  2010. 

Optimum P levels for arsenic removal from contaminated groundwater by Pteris vittata L. of different ages. 

J. Haz. Mat.  180: 662–667

66       images/PDF.gif  Srivastava M., L.Q. Ma, J. Santos, and P. Srivastava.  2010.

           Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions

           Bioresource Technology.  101: 2691-2699.

65       images/PDF.gif  Wang, X., L.Q. Ma, B. Rathinasabapathi, Y. Liu, G. Zeng.  2010.

           Uptake and translocation of arsenite and arsenate by Pteris vittata L.: effects of silicon, boron and mercury.
           Environ. Exp. Bot. 
68: 222–229.

64       images/PDF.gif  Wei, S, L.Q. Ma, U. Saha, S. Mathews, S. Sundaram, B. Rathinasabapathi, Q. Zhou.  2010.
           Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L
.
           Environ Pollution. 
158:1530–1535.

Year 2009 (8)

63         Kertulis-Tartar, G.,  Bala Rathinasabapathi and L. Q. Ma  2009.

           Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure
           Plant Phisiology Biochemsitry.
   47:960–965

62         Gonzaga, M.I.,S. L.Q. Ma J.A.G. Santos, and M.I.S. Matias.  2009.

           Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns

           Sci. Total Environ.  407: 4711-4716

61      
  Mathews, S., L.Q. Ma, B. Rathinasabapathib, and R.H. Stamps.  2009.
           Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L.
           Environ. Exp. Bot.  
65:282-286.

60         Natarajan, S., R.H. Stamps, U.K. Saha and L.Q. Ma.  2009.

           Effects of N and P levels, and frond-harvesting on absorption, translocation and accumulation of arsenic by Chinese brake fern (Pteris vittata L.). 

           Int. J. Phytoremediation.  11: 313–328.

59         Singh, N., L.Q. Ma, J.C. Vu and A. Raj.  2009.
           Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

           Environnent Pollution.  157: 2300-2305

57         Srivastava M., L.Q. Ma, B. Rathinasabapathi and P. Srivastava.  2009.

           Effect of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.

           Bioresource Technology.  100: 1115–1121.

Year 2008-published (6)

56         Fayiga, A.O., and L. Q. Ma, and B. Rathinasabapathi. 2008.

           Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.
           Environ.
Exp. Bot. 62: 231-237

55         Gonzaga, M.I.S., Satos, J.A.G., and L.Q. Ma. 2008.

           Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils:
           Repeated harvests and arsenic redistribution.
          
Environ. Pollution. 154:212-218

54          Natarajan, S. R. Stamps, U. Saha and L.Q. Ma.  2008. 

              Phytoremediation of arsenic contaminated groundwater using Pteris vittata L.: effect of pant density and N and P levels 

              Int. J. Phytoremediation.  10:222–235.

53         Satos, J. A.G., L.Q. Ma, M.I.S. Gonzaga, and M. Srivastava. 2008.

           Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L of different ages.
           Environ. Pollution. 154:306-31

52         Natarajan, S,, R.H. Stamps, U.K. Saha and L.Q. Ma. 2008.

           Phytoremediation of arsenic contaminated groundwater using Pteris vittata L.:

           effect of pant density and nitrogen and phosphorus levels
           Int. J. Phytoremediation. 10: 222-235.

51         Sundaram S, B. Rathinasabapathi, LQ. Ma, and BP Rosen. 2008.
               An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite
          
J. Biological Chem. 283:6095-6101.

Year 2007 (6)

50       Bondada, B.R., R. S. Underhill, L.Q. Ma, M.R. Davidson, Y. Guyodo, R.S. Duran. 2007.
           Spatial distribution, localization and speciation of arsenic in the hyperaccumulating fern (Pteris vittata l.)

           In P. Bhattacharya, A.B. Mukherjee and R.H. Loeppert (eds)
           Arsenic in Soil and Groundwater Environments: Trace Metals and Other Contaminants in Environment.
           Elsevier Book Series. Volume 9. pp 299-314

49         Fayiga, A.O., L. Q. Ma and Q. Zhou. 2007.
          
Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil.
           Environment Pollution. 147:737-742

48         Gonzaga, M.I.,S. J.A.G. Santos, N.B. Comerford, and L.Q. Ma. 2007.
              Comparison of root systems efficiency and arsenic uptake of two fern species
              Communications Soil Science Plant Analysis. 38:1163 - 1177.

47         Gonzaga, M.I.,S. J.A.G. Santos, and L.Q. Ma,. 2007.

           Effects of the plant growth stage on the arsenic hyperaccumulation by Pteris vittata L
           Water Air Soil Pollution. 186:
289-295

46         Rathinasabapathi, B., M. Rangasamy, J. Froeba, R. H. Cherry, …..., M. Srivastava, & L.Q. Ma. 2007.
           Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory
           New Phytologist. 175: 363–369.

45.      Singh, N., and L. Q. Ma.  2007. 

                         Assessing plants for phytoremediation of arsenic contaminated soils. 

                         In Phytoremediation: Methods and Reviews, N. Wiley (ed.).  Humana Press, NJ, USA. 

Year 2006 (11)

44         Bondada, B., C. Tu, and L.Q. Ma. 2006.  
          
Surface structure and anatomical aspects of Chinese brake fern (Pteris vittata; Pteridaceae).
          
Brittonia.  58: 217-228.

43         Fayiga, A.O. and L. Q. Ma. 2006. 
           Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata.
           Science Total Environment.
359: 17– 25

42         Gonzaga, M.I.S, J.A.G. Santos, and L.Q. Ma. 2006.
           Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L  
           Environment Pollution.
143:254-260.

41       Gonzaga, M.I., S, J.A.G. Santos, and L.Q. Ma. 2006.
           Arsenic phytoextraction and hyperaccumulation by fern species  
           Sci. Agric. 63:.90-101.

40       Kertulis-Tartar, G., L. Q. Ma, C. Tu and T. Chirenje. 2006.
           Phytoremediation of an arsenic-contaminated site using Pteris vittata L: a two-year study.
           Int. J. Phytoremediation. 8:311-322.

39         Rathinasabapathi B, Raman SB, Kertulis G, and Ma LQ. 2006.
           Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern
            (Pteris vittata L.) reduces arsenate to arsenite
           Canadian J. Microbiology.  52:695-700.

38         Rathinasabapathi B, L.Q. Ma, and M. Srivastava. 2006.  
           Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites
           In
: Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Edition),
           Teixeira da Silva JA (ed), Global Science Books, London, UK, pp 305-311.

37         Rathinasabapathi B, S. Wu, J. Rivoa,S. Sundaram, L.Q. Ma. and M. Srivastava. 2006.
           Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase
           based on cDNA expression cloning in Escherichia coli.
           Plant Molecular Biology.  62: 845-857.

36         Singh, N. and L.Q. Ma. 2006.
           Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata and
           non-hyperaccumulator Pteris ensiformis
           Environment Pollution.
141:238-246.

35         Singh, N., L. Q. Ma, M. Srivastava and B. Rathinasabapathi. 2006.
           Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L
           Plant Science. 170: 274-282.

34         Srivastava M. , L.Q. Ma, and J. A. G. Santos.  2006.
           Three new arsenic hyperaccumulating ferns.
           Sci. Total Environment.  364: 24-31.

Year 2005 (9)

33         Al Agely, A., D.M. Sylvia, and L.Q. Ma 2005.
           Mycorrhizae increase arsenic uptake by hyperaccumulator Pteris vittata.
           J. Environ. Qual. 34:2181–2186.

32         Fayiga A.O. and L. Q. Ma 2005. 
           Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils.
           Water Air Soil Pollution. 168: 71–89.

31         Fayiga A.O., L. Q. Ma, J. Santos, B. Rathinasabapathi, Stamps B. and R. C. Littell. 2005. 
           Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system.
           Int. J. Phytoremediation. 7:231–240.

30         Kertulis-Tartar, G., L.Q. Ma, G.E. MacDonald, R. Chen, J. Winefordner, and Y. Cai. 2005.
           Arsenic speciation and transport in Pteris vittata L. and the effects on phosphate in the xylem sap.

           Environ. Exp. Bot. 54: 239–247.

29         Luongo, L and L.Q. Ma. 2005.   
          
Characteristics of arsenic accumulation by Pteris and non-Pteris ferns.
           Plant Soil. 277: 117 - 126.

28       Singh, N. and L.Q. Ma. 2005.
           Chinese Brake fern-a potential phytoremediator of arsenic contaminated soil and water
           Universities J. Phytochemistry Ayurvedic Heights 1:41-43

27         Srivastava M. , L. Q. Ma, N. Singh, and S. Singh.  2005.
           Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic
           J. Exp. Bot.  56: 1335–1342
.

26         Srivastava M. , L.Q. Ma, and J. Cotruvo.  2005.
           Uptake and distribution of selenium in different fern species
           Int. J. Phytoremediation. 7:33-42.

25         Tu, C., and L.Q. Ma. 2005. 
           Effects of As hyperaccumulation on nutrient content and distribution in fronds of the hyperaccumulator Chinese brake.
           Environ. Pollution. 135: 333-340.

Year 2004 (11)

24         Bondada, B.R., S. Tu and L. Q. Ma. 2004.
           Absorption of frond-applied arsenic by the arsenic hyperaccumulating fern Pteris vittata L.
          
Sci. Total Environment.  332:61-70.

23         Cai, Y., J. Su and L.Q. Ma. 2004.
          
Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements
           Environ. Pollution. 129: 69-78.

22         Cao, X. Lena Q. Ma, and C. Tu. 2004.
          
Antioxidative responses to arsenic in arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.)
           Environ. Pollution. 128:317-325.

21         Chen, R., B.W. Smith, J.D. Winefordner, M.S. Tu, G. Kertulis, and L.Q. Ma. 2004.
           Arsenic speciation in Chinese brake fern by ion-pair HPLC–inductively coupled plasma mass spectroscopy
           Analytica Chemica Acta. 504:199-207.

20         Fayiga, A.O., L.Q. Ma, R. X. Cao, and B. Rathinasabapathi. 2004.
           Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
           Environment Pollution. 132:289-296.

19         Tu, S., L.Q. Ma, A.O. Fayiga and E.J. Zillioux. 2004. 
           Phytoremediation of Arsenic Contaminated Groundwater by an Arsenic Hyperaccumulating Fern Pteris vittata L.
           Int. J. Phytoremediation. 6:35–47.

18         Tu, S. and L.Q. Ma. 2004.
          
Comparison of arsenic uptake and distribution in arsenic hyperaccumulator Pteris vittata L. and
              non-hyperaccumulator Nephrolepis exaltata L
           J. Plant Nutrition.  27:1227-1242.

17         Tu, S. and L.Q. Ma. 2004.
          
Root exudation and its role in arsenic hyperaccumulation of Pteris vittata
           Plant Soil. 258: 9-19.

16         Tu, S., L.Q. Ma, G. E. MacDonald, and B. Bhaskar. 2004.
           Arsenic Absorption, Speciation and Thiol Formation in Excised Parts of Pteris vittata in the Presence of Phosphorus
           Environ. Exp. Bot. 51: 121-131.

15         Zhang, W., Y. Cai, K. Downum, and L.Q. Ma. 2004.
           Arsenic complex in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern)
           Journal of Chromatography A. 1043: 249–254.

14         Zhang, W., Y. Cai, Z. Chen, K. Downum, and L.Q. Ma. 2004.
           Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)
           Environ. Pollution. 131:337-345

              Year 2003 (7)  

              13.      Cai, Y. and L.Q. Ma.  2003. 

                         Metal tolerance, accumulation and detoxification in plants with emphasis on arsenic in terrestrial plants. 

                         In Y. Cai and O. Braids (eds.) Biogeochemistry of environmentally important trace elements.  Oxford University Press.. pp. 95-114.

12         Cao, X., L.Q. Ma, and A. Shiralipour. 2003.

                         Effects of compost and phosphate amendments on arsenic leachability in soils and arsenic uptake
           by Chinese Brake (Pteris Vittata L.)
          
Environ. Pollution. 126:157-167.

11        Fitz, w.j., w.w. Wenzel, h. Zhang, j. Nurmi, k. Tipek, z. Fischerova, …..., l.q. Ma, & g. Stingeder. 2003.
       Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency
       Environ. Sci. Technol.  37: 5008-5014.

10         Tu, C., and L.Q. Ma.  2003.

           Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.
           Plant Soil.  249: 373–382.

09         Tu, C., L.Q. Ma, W. Zhang, Y. Cai, W.G. Harris. 2003.
           Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). 
           Environ. Pollution.  124:223-230.

08         Tu, S. and L. Q. Ma. 2003.
          
Interactive Effects of pH, As and P on growth and As/P uptake in hyperaccumulator Pteris vittata
           Environ. Exp. Bot.  50: 243-251.

07         Webb, S.M, J.-F. Gaillard, L. Q. Ma, and C. Tu. 2003. 
           XAS speciation of arsenic in a hyperaccumulating fern.
           Environ. Sci. Technol. 
37: 754 - 760.

Year 2002 (5)  

06         Bondada, B. and L.Q. Ma. 2002. 
          
Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.).  

           In Chandra and Srivastava (eds.) Pteridology in New Millennium. Kluwer Academy Publishers. pp. 397-420.

05         Lombi, E. F.-J. Zhao, M. Fuhrmann, L.Q. Ma and S.P. McGrath. 2002. 
           Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata
           New Phytologist. 156:195–203

05         Tu, C., and L.Q. Ma. 2002.
          
Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder Brake
           J. Environ. Qual. 31:641-647.

04         Tu, C., L.Q. Ma, and B. Bondada. 2002.
           Arsenic Accumulation in the Hyperaccumulator Chinese Brake Fern (Pteris vittata L.) and Its Utilization
           Potential for Phytoremediation.
          
J. Environ. Qual. 31:1671-1675.

03          Zhang, W., Y. Cai, C. Tu, and L.Q. Ma. 2002.
          
Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
           Sci. Total Environment. 300:167-177

Year 2001 (2)
02         Ma, L.Q., K.M. Komar, C. Tu, W. Zhang,and Y Cai. 2001.
          
* A fern that hyperaccumulates arsenic. *
           Nature. 409:579.

01         Ma, L.Q., K.M. Komar, C. Tu, W. Zhang,and Y Cai. 2001. 
          
* A fern that hyperaccumulates arsenic-addendum. *
           Nature. 411:438.

II       Phosphate-induced metal immobilization in contaminated soils (22)

22         Cao, X. L.Q. Ma, and A. Shiralipour.  2009.
           Using phosphate rock to immobilize lead, copper, and zinc in contaminated soils
           J. Haz.
Mat.  164: 555-564.

21         Cao, X., Lena Q. Ma, S. Singh, Q. Zhou. 2008.
           Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions
           Environment Pollution. 152: 184-192

20       Melamed, R. and L.Q. Ma. 2007.
           Phosphate-induced Pb immobilization in contaminated soils: mechanisms, assessment and field application
           In: Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments.
           Violante, A., P.M. Huang and G. Stotzsky (eds.). John Wiley & Sons, Chichester, England.

19       Cao, X. and L.Q. Ma. 2007
           Transformation of lead bullets and phosphate-induced lead immobilization at shooting range sites.
           In Rachel H. Plattenberg (ed). Environmental Pollution: New Research.
           Nova Science Publishers, New York, pp. 99-119.

18         Yoon, J., X. Cao, and L.Q. Ma.  2007
           Application methods affect P-induced Pb immobilization from a contaminated soil
           J. Environ. Qual.  36:373-378

17         Singh, S.P., L.Q. Ma, and M.J. Hendry.  2006.

           Characterization of aqueous lead removal phosphatic clay: equilibrium and kinetics studies.

           J. Haz. Mat.  136: 654-662.

16         Singh, S.P., L.Q. Ma, and M.J. Hendry. 2006.
           Characterization of aqueous lead removal phosphatic clay: equilibrium and kinetics studies.

           J. Haz. Mat. 136: 654-662.

15       images/PDF.gif  Guo, G., Q. Zhou and L.Q. Ma. 2006.  
           Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review
           Environmental Monitoring Assessment.
116: 513–528.

14       Cao, X. Lena Q. Ma, Dean Rhue, and Chip Appel.  2004.
           Mechanisms of Lead, Copper, and Zinc Immobilization by Phosphate Rock
           Environ. Pollution.
 131:435-444.

13         Cao, R.X, L.Q. Ma, S.P. Singh, M. Chen, and W. Harris.  2003.
           Phosphate-induced metal immobilization in a contaminated site
           Environ. Pollution.
 122:19-28.

12        Chen, M., L.Q. Ma, X. Cao, R. Melamed and S.P. Singh. 2003.
           Field demonstration of in situ immobilization of soil Pb using P amendments
           Advances Environmental Research.
 8:93-102

11         Melamed, R., X. Cao, Chen, M. and L.Q. Ma.  2003.

           Field assessment of Pb immobilization in a contaminated soil using P amendments.

           Sci. Total Environment.  305:117-127.

10         Cao, R.X., L.Q. Ma, M. Chen, S.P. Singh, and W.G. Harris.  2002.
           Impacts of phosphate amendments on lead biogeochemistry in a contaminated site
           Environ. Sci. Technol.
36: 5296-5304.

9         Singh, S.P., L.Q. Ma, and W.G. Harris. 2001. 
           Heavy metal interactions with phosphatic clay: sorption and desorption behavior

           J. Environ. Qual.  30:1961-1968.

8           Ma, L.Q. and G.N. Rao.  1999.
           Aqueous Pb reduction in Pb-contaminated soils by Florida phosphate rocks.
           Water Soil Air Pollution.
 110:1-16.

7          Ma, L.Q. and G.N. Rao. 1997.
           The effect of phosphate rock on sequential chemical extraction of lead in contaminated soils.

           J. Environ. Qual.  26: 788-794.

6           Ma, L.Q., A.L. Choate, and G.N. Rao. 1997.
           Effects of incubation and phosphate rock on Pb extractability and speciation in contaminated soils.

           J. Environ. Qual.  26: 801-807.

5           Ma, L.Q. 1996.

           Factors influencing the effectiveness and stability of aqueous Pb immobilization by hydroxyapatite.

           J. Environ. Qual. 25:1420-1429.

4           Ma, L.Q., T.J. Logan, and S.J. Traina. 1995.   
           Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks.

           Environ. Sci. Technol. 29:1118-1126.

3           Ma, L.Q., S.J. Traina, T.J. Logan, and J.A. Ryan. 1994.

           Effects of aqueous Al, Cd, Cu, Fe, Ni, and Zn on Pb immobilization by hydroxyapatite.

           Environ. Sci. Technol.  28:1219-1228.

2           Ma, L.Q., T.J. Logan, S.J. Traina, and J.A.Ryan. 1994.

           Effects of NO3, Cl, F, SO4 and CO3 on Pb immobilization by hydroxyapatite.

           Environ. Sci. Technol.   28:408-418.

1           Ma, L.Q., S.J. Traina, T.J. Logan, and J.A. Ryan. 1993.

           In situ Pb immobilization by apatite.

           Environ. Sci. Technol.  27:1803-1810.

III     Metal background concentrations in Florida soils (11)  

11       images/PDF.gif  Chirenje, T., L.Q. Ma, M. Reeves, and M. Szulczewski. 2004.

           Lead distributions in urban soils of two Florida cities: Gainesville and Miami
           Geoderma. 119:113-120.

10        Chirenje, T., L.Q. Ma, M. Chen and E. J. Zillioux.  2003.

           Arsenic background concentration comparison in urban and non-urban areas of Florida
           Advances Environmental Research.
 8:137-146

9           Chirenje, T.,L. Q. Ma, M. Szulczewski, R. Littell, K. M. Portier and E. Zillioux.   2003.
           Soil arsenic distribution in two Florida cities: Gainesville and Miami
           J. Environ. Qual.
  32:109-119.

8         Chen, M. L. Q. Ma, and Willie G. Harris. 2002.
           Arsenic concentrations in Florida surface soils: influence of soil type and properties
           Soil Sci. Soc. Am. J. 66:632-640.

7           Chirenje, T.L. Q. Ma, and E. Zillioux.  2002.
           Determination of arsenic background concentrations in urban soils
          
The Scientific World JOURNAL  2:1404-1417.

6         Chen, M. L.Q. Ma, C. G. Hoogeweg, and W.G. Harris. 2001.
           Arsenic background concentrations in Florida surface soils: determination and interpretation
           J. Environ. Forensics.
 2:117-126.

5          Chirenje, T. L.Q. Ma, A.G. Hornsby, K. Portier, W.G. Harris, and E. J. Zillioux.  2001.
           Protocol development for assessing arsenic background concentrations in Florida urban soils
           J. Environ. Forensics.
 2:141-153.

4          Zillioux, E. J., Chirenje, T., P. Cline, T.W. Fitzpatrick, D.J. Folkes, S.C. Gautie, R.D. Jones, Z.P. Kulakowski and  L.Q. Ma . 2001.
           Conflict resolution associated with arsenic background definition: a panel discussion
           J. Environ. Forensics.
 2:169-175.

3         images/PDF.gif  Chen, M. , Ma, L. Q., and Y.C. Li. 2000.  

           Concentrations of P, K, Al, Fe, Mn, Cu, Zn, and As in Marl soils from South Florida.
           Soil Crop Sci. Soc. Florida Proc.  59:124-129.

2         images/PDF.gif  Chen, M., L.Q. Ma and W. Harris. 1999.
           Baseline concentrations of 15 trace elements in Florida surface soils.
           J. Environ. Qual. 28:1173-1181.

1         images/PDF.gif  Ma, L.Q., F. Tan and W.G. Harris. 1997.  

           Concentrations and distributions of 11 elements in Florida soils.

           J. Environ. Qual. 26:769-775.

IV      Lead chemistry in shooting range soils (10)  

10       images/PDF.gif  Yin, X., B Gao, L.Q. Ma, U.K. Saha, H. Sun, and G. Wang.  2010. 

           Colloids-facilitated Pb transport in two shooting range soils in Florida

           J. Haz. Mat.  177: 620–625.

9         images/PDF.gif  Yin, X., U.K. Saha, and L.Q. Ma.  2010. 

           Effectiveness of best management practices to slow down Pb weathering in a shooting range in Florida

           J. Haz. Mat.  179: 895–900.

8         Cao, X. and L.Q. Ma. 2007
           Transformation of lead bullets and phosphate-induced lead immobilization at shooting range sites.
           In Rachel H. Plattenberg (ed). Environmental Pollution: New Research.
           Nova Science Publishers, New York, pp. 99-119.

7          Ma, L.Q., D.W. Hardison Jr., W.G. Harris, X. Cao, and Qixing Zhou. 2007.
           Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges
           Water Air Soil Pollution.
 178:297-307.

6         Cao, X., D. Dermatas, G. Shen, and L.Q. Ma. 2005.

                         Lead contamination and immobilization at shooting range sites, p. 315–321,

                         In A. Al-Tabbaa and J. A. Stegemann, eds. Stabilisation/Solidification Treatment and

                         Remediation. Taylor & Francis Group, London.

5           Hardison Jr., D.W., L.Q. Ma, T. Luongo, and W.G. Harris.   2004.
           Lead Contamination in Shooting Range Soils from Abrasion of Lead Bullets and subsequent weathering
           Sci. Total Environment.   328:175-183.

4           Cao, X., L.Q. Ma, M. Chen, D. Hardison, and W. Harris.  2003.
           Lead transformation and distribution in Florida shooting range soils.
          
Sci. Total Environment.   307:179 -189.

3           Cao, R.X., L.Q. Ma, M. Chen, D. Hardison, and W.G. Harris.  2003.   
           Weathering of lead bullets and their environmental effects at outdoor shooting ranges
           J. Environ. Qual.  32: 526-534.

2           Chen, M., L.Q. Ma, W.G. Harris, and X. Cao. 2002.
           Characterization of Pb in soils of a rifle/pistol shooting range in Central Florida.
           Soil Sediment Contamination.  11:1-17.

1          Chen, M. L. Q. Ma, and Willie G. Harris. 2001.
           Distribution of Pb and As in soil at a shooting range in Central Florida
           Soil Crop Sci. Soc. Florida Proc.  60:15-20.

V        Contaminant and colloid transport (8)

8         images/PDF.gif  Gao, B., X. Cao, Y. Dong, Y. Luo, and L.Q. Ma.  2011.
           Colloid deposition and release in Soils and their association with heavy metals
           Critical Review Environ. Sci. Technol.  41:336-372.

7         images/PDF.gif  Sun, H., B. Gao, Y. Tian, C. Yu, and L.Q. Ma.  2010.
           Kaolinite and lead in saturated porous media: facilitated and impeded transport

J. Environ. Eng.  136:1305-1308.

6         images/PDF.gif  Yin, X., B Gao, L.Q. Ma, U.K. Saha, H. Sun, and G. Wang.  2010. 

           Colloids-facilitated Pb transport in two shooting range soils in Florida

           J. Haz. Mat.  177: 620–625.

5         images/PDF.gif  Ma, L.Q., Y. Dong and Q. Zhou. 2005.
           Relation of relative colloid stability ratio and colloid release in two lead-contaminated soils
           Water Soil Air Pollution. 160:343-355.

4           Ma, L.Q. and Y. Dong.  2004.
           Effects of incubation on solubility and mobility of trace metals in two contaminated soils
           Environ. Pollution.
 130:301-307.

3           Ma, L.Q., Y. Dong and Q. Zhou. 2004.
           Relation of relative colloid stability ratio and colloid release in two lead-contaminated soils
           Water Soil Air Pollution.
 160:343-355.

2          Dong, Y., L.Q. Ma and R.D. Rhue. 2000.
           Relation of Pb solubility and Fe partitioning in soils.
           Environ. Pollution.
 110:515-522.

1          Tan, Z., W.G. Harris and L.Q. Ma. 2000.
           Comparison of groundwater colloids in adjoining soils of Florida flatwood
           Soil Sci.  165:124-134.

VI      Metal accumulation by plants (8)  

8         images/PDF.gif  Zeng, X.-W., L.Q. Ma, R.-L. Qiu, and Y.-T. Tang.  2011.

Effect of Zn on plant tolerance and non-protein thiols accumulation in Zn hyperaccumulator Arabis paniculata Franch

Environ. Exp. Bot.  70: 227–232.

7         Nan, Z., Z. Zhao, S. Liu, U. Saha, L.Q. Ma, and Clarke-Sather.  2010. 

The uptake and translocation of selected elements by cole (brassica) grown using oasis soils in pot experiments

Toxicological & Environmental Chemistry.  92: 1541-1549.

6         images/PDF.gif  Zeng, X., L.Q. Ma, R. Qiu, and Y. Tang.  2009.

           Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch
           Environ.
Exp. Bot.  66:242-248.

5         images/PDF.gif  Liu, J-N., Zhou, Q-X, Sun, T, Ma, L.Q. and Wang, S. 2008.

           Identification and chemical enhancement of two ornamental plants for phytoremediation
           Bull. Environ. Contamination Toxicol. 80:260-265.

4         images/PDF.gif  Liu, J-N., Zhou, Q-X, Sun, T, Ma, L.Q. and Wang, S. 2008.

           Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics
          
J. Haz. Mat. 151:261-267.

3           Srivastava M. , L.Q. Ma, and J. Cotruvo.  2005.
           Uptake and distribution of selenium in different fern species
           Int. J. Phytoremediation. In press.

2           Wei, S, Q. Zhou, X. Wang, K. Zhang, G. Guo and L.Q. Ma.  2005.
           A newly-discovered Cd-hyperaccumulator So-lanum nigrum L.
           Chinese. Sci. Bulletin.
 50: 33-38.

1          Yoon, J., X. Cao, Q. Zhou, and L.Q. Ma. 2006.
           Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site  
           Sci. Total Environment
368: 456464.

VII    Metal chemistry in soils (12)

12       Appel  Appel, C., L.Q. Ma, and D. Rhue. 2008.
           Sequential Sorption of Pb and Cd in Tropical Soils
           Environ. Pollution. 55:132-140.

11       Guo, G., Q. Zhou and L.Q. Ma.  2006.
           Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review
           Environmental Monitoring Assessment. 116: 513-528

10       Appel, C., L.Q. Ma, and D. Rhue.  2003.
           Selectivities of potassium/calcium and potassium/lead exchange in two tropical soils.
           Soil Sci. Soc. Am. J.  67:1707-1714.

9         Appel, C., L.Q. Ma, D. Rhue, and E. Kennelley.  2003.
          
Determination of zero point of charge in soils and minerals: method comparison
           Geoderma.
 113:77- 93.

8         Appel, C., L.Q. Ma, D. Rhue, and W. Reve.  2002.  
           Heats of K/Ca and K/Pb exchange in two tropical soils as measured by flow calorimetry
           Soil Sci.
 167:773-781.

7         Appel, C., and L.Q. Ma.  2002.
           Concentration, pH, and surface charge effects on Cd/Pb sorption in three tropical soils
           J. Environ. Qual.
  31:581-589.

6         images/PDF.gif  Singh, S.P., L.Q. Ma, F.M.G. Tack and M.G.Verloo. 2000.
           Trace metal leachability from land disposed dredged sediments .
           J. Environ. Qual. 29:1124-1132.

5         Ma, L.Q. and G.N. Rao. 1997.
           Chemical fractionation of trace metals in contaminated soils.

           J. Environ. Qual. 26:259-264.

4         Ma, L.Q. and W.L. Lindsay. 1995.
           Estimation of Cd2+and Ni2+ activities in contaminated and uncontaminated soils by chelation.

           Geoderma.  68:123-133.

3         Ma, L.Q. and W.L. Lindsay. 1993.
           Measurement of free Zn2+activities in uncontaminated and contaminated soils using chelation.

           Soil Sci. Soc. Am. J.  57:963-967.

2         Ma, L.Q. and W.L. Lindsay. 1990.
           Divalent zinc activity in arid-zone soils by chelation.
           Soil Sci. Soc. Am. J.
 54:719-722.

1         Singh, S.P., L.Q. Ma, F.M.G. Tack and M.G.Verloo. 2000.
           Trace metal leachability from land disposed dredged sediments
.
           J. Environ. Qual.
 29:1124-1132.

VIII  Organic contamination in the environment (8)  

8         images/PDF.gif  Banger, K., G.S. Toor, T. Chirenje and L.Q. Ma. 2010.

           Polycyclic aromatic hydrocarbons in four urban land use soils of Miami, Florida

           Soil Sediment Contamination.  19:231–243.

7         images/PDF.gif  Li, Y., Y. Zhao, S. Peng, Q. Zhou, and L.Q. Ma.  2010.  
          
Temporal and spatial trends of total petroleum hydrocarbons in the seawater of Bohai Bay, China from 1996 to 2005.
          
Marine Pollution Bulletin.  60: 238–243.

6         images/PDF.gif  Liu, W.X., Y.M. Luo, Y. Teng, Z.G. Li, and L.Q. Ma.  2010.
          
Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes.
          
Environmental Geochemistry Health.  32: 23-29.

5         Wang YY, Zhou QX, Peng SW, Ma LQ, and Niu XW.  2009.

Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system

           J. Environ. Sci.-China. 21:612-617.

4         images/PDF.gif  Cao, X., L.Q. Ma, B. Gao, and W.G. Harris.  2009. 

           Dairy manure-derived biochar effectively sorbs lead and atrazine. 
           Environmental Science & Technology.  43: 3285-3291.

3          Ouynag, Y. and L.Q. Ma.  2005.
           Simulation of phytoremediation of a TNT-contaminated soil using CTSPAC model
           J. Environ. Qual.
 34:1490-1496.

2         images/PDF.gif  Rockwood, D. L., B. Becker, A. Lindner, A. Pacheco, and L. Ma. 2005.
           Genetic testing prerequisites for effective tree-based phytoremediation systems
           in: B.C. Alleman and M.E. Kelley (Conference Chairs) In Situ and On-Site Bioremediation.
           Proceedings of the 8th International In Situ and On- Site Bioremediation Symposium. 
           Battelle Press, Columbus, OH.

1         images/PDF.gif  Xiao, H., Q. X. Zhou and L. Q. Ma. 2005.
           Joint effects of acetochlor and urea on germinating characteristics of crop seeds
           Science in China Series C-Life Sciences.
48: 1-6.

IX      Papermill ash, sludge and compost in soils (12)

12         Chirenje, T., L.Q. Ma and L. Lu.  2006.
           Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust
           Water Air Soil Pollut.  171:301-314.

11       images/PDF.gif  Rivero, C, T. Chirenje, L.Q. Ma, and G.A. Martinez. 2004.

                         Influence of compost on soil organic matter quality under tropical conditions.
          
Geoderma. 123: 355-361.

10        Chirenje, T. and L.Q. Ma.  2002.
           Impacts of high-volume papermill ash amendment on soil properties and nutrient status.
           Commun. Soil Sci. Plant Anal.
 33:1-17.

9           Chirenje, T., L.Q. Ma and C. Rivera. 2002.
           Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid.
           Geoderma.
 108:31-47.

8           Chirenje, T., L.Q. Ma and C. Rivera. 2002.
           Effects of humic and fulvic acids on As and Cr leachability in wood ash-amended soils.
           Soil Sediment Contamination. 11:359-375.

7         images/PDF.gif  Wu, L., and L. Q. Ma. 2002.  
           Relationship between compost stability and extractable organic carbon.
           J. Environ. Qual. 31:1323-1328.

6         images/PDF.gif  Wu, L. and L.Q. Ma. 2001.
           Impacts of sample storage on compost stability and maturity evaluation.
           J. Environ.Qual. 30:222-228.

5         images/PDF.gif  Wu, L., L.Q. Ma and G.A. Martinez. 2000.
           Comparison of methods for evaluating stability and maturity of biosolids compost.
           J. Environ. Qual. 29:424-429.

4          Chirenje, T. and L.Q. Ma.  1999.

           Effects of acidification on metal mobility in a papermill-ash amended soil.
           J. Environ. Qual.
 28:760-766.

3         Chirenje, T. and L.Q. Ma.  1999.
           Greenhouse study of slash pine responses to fertilizer in a papermill-ash amended soil.
           Soil Crop Sci. Soc. Florida Proc. 58:760-6.

2         Vest, M. M, T. Chirenje and L.Q. Ma. 1999.
           Study of slash pine response to wood fired boiler ash and fertilizer in a boiler ash amended soil.
           TAPPI Int. Environ. Conf. Proc.
 3 :1131-1145.

1         Xiao, C., L.Q. Ma, and T. Sarigumba. 1999.
           Effects of soil on trace metal leachability from papermill ashes and sludge.
           J. Environ. Qual.
 28:321-333.

        Digestion methods for metal analysis in soils (2)  

2          Chen, M. and L.Q. Ma.  2001.
           Comparison of three aqua regia digestion methods for analyzing 16 elements in soils
           Soil Sci. Soc. Am. J.
 65:491-499.

1          Chen, M. and L.Q. Ma.  1998.
           Comparison of four EPA digestion methods for trace metals using certified and Florida soils.
           J. Environ. Qual. 27:1294-1300

        CCA treated woods (2)

2         Cao, X.  and Lena Q. Ma.  2004.
           Effects of Compost and Phosphate on Plant arsenic Uptake from Soils near pressure-treated wood
           Environment Pollution.
 132: 435-442

1          Chirenje, T., L.Q. Ma, C. Clark, and M. Reeves.  2003.  
           Copper, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles.
           Environ. Pollution. 124:407-417

        Phosphate background concentrations in Florida soils (2)
2        
Chen, M. and L.Q. Ma. 2001.
           Taxonomic and geographic distribution of total P in Florida surface soils
           Soil Sci. Soc. Am. J.
 65:1539-1547.

1         Chen, M. , Ma, L.Q., and W.G. Harris. 1999.
           Assessment of
P concentrations in different types of Florida surface soils.
           Soil Crop Sci. Soc. Florida Proc. 58:58-62.