SWS 4244
WETLANDS

PREREQUISITES: None

CLASSROOM LOCATION: G001 McCarty Hall D

MEETING TIME: Tuesday 4th and 5th period, Thursday 5th period.

COURSE WEBSITE: The course website can be accessed through E-Learning and Canvas: http://lss.at.ufl.edu

COURSE DESCRIPTION AND STATEMENT OF GENERAL EDUCATION PURPOSE:
Wetland ecosystems play an integral role in the physical, chemical and biological processes that occur on earth. Plant and animal habitats found in wetlands are unique and play a critical part in the lifecycle of both commercially important species as well as many threatened and endangered organisms. Wetlands are also often a focal point of issues related to protection of environmental resources, environmental policy and property rights. This course provides an introduction to wetland ecosystems focusing first on the hydrologic drivers, biogeochemical processes, unique soil characteristics and the biological adaptations that allow organisms to survive in this environment. Next, the interaction of these processes to form unique types of wetland communities, how they change over time and the environmental factors that shape these communities are investigated. Lastly, the interaction of humans with wetlands is discussed including regulations used to protect wetlands and requirements for mitigating wetland loss as well as how wetlands are being integrated into the human landscape to help improve water quality and treat just about any type of stormwater or wastewater. The course will provide both the fundamental science behind our understanding of wetland processes and functions as well as a practical application of these concepts and how they influence all of us on a regular basis.

COURSE OBJECTIVES:
• To familiarize students with the structure and function of wetlands.
• To make students aware of the role wetlands play at the watershed scale and in regulating global cycles.
• To familiarize students with ecological processes in wetlands related to succession, habitat and change in response to environmental forcing parameters.
• To acquaint the student with policy and regulatory issues related to wetlands.
• To acquaint the student with concepts of wetlands mitigation, restoration, and integration of constructed wetlands to address water quality and quantity issues in urban and agricultural landscapes

STUDENT LEARNING OBJECTIVES:
• Understand the structure of wetlands including hydrology, biogeochemistry, soils and vegetation adaptations.
• Understand the function of wetlands and how they influence systems at the watershed and global scale.
• Comprehend the difference between wetland community types and what specific environmental forcing parameters influence those communities.
• Comprehend the wildlife found in wetlands and what influence they can have on creating and modifying wetlands.
• Evaluate federal and local policies intended to maintain and preserve wetland functions in the landscape.
• Understand the opportunities and techniques used to integrate constructed and treatment wetlands into human landscapes as a means to mitigate water quality impacts while synthesizing and applying all aspects of wetland structure and ecological processes learned during the course.

COURSE FORMAT: The course material is mainly conveyed through three 40-50 minute lectures per week. Lectures are also made available asynchronously on the Canvas website posted at the end of the week. There will also be two required field trips on campus that will occur during the Tuesday class periods. For DE students field trips will be virtual visits to local wetlands.

TEXTBOOK: (suggested, not required)

GRADING: Overall grade will be determined based on a student’s performance in all of the following categories:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>12 %</td>
</tr>
<tr>
<td>Homework</td>
<td>10 %</td>
</tr>
<tr>
<td>Field Trips</td>
<td>8 %</td>
</tr>
<tr>
<td>Project</td>
<td>20 %</td>
</tr>
<tr>
<td>Midterm Exam (Units 1-6)</td>
<td>25 %</td>
</tr>
<tr>
<td>Final Exam (Units 7-11)</td>
<td>25 %</td>
</tr>
</tbody>
</table>

Quizzes - There will be an open notes quiz posted on Canvas almost weekly covering lecture material from the previous week.

Homework - Homework grades will include two field assignments where students will be required to locate hydrologic indicators in a local wetland as well as determine the classification of a local wetland using the online National Wetlands Inventory and then visiting the wetland to confirm the classification.

Field Trips – There will be two field trips to the Natural Area Teaching Laboratory on the University of Florida campus during the Tuesday double period. Participation in the trips will account for 8% of your final grade. DE students will have a virtual wetland tour that
they will be responsible for viewing and writing a brief summary about to verify participation.

**Project** – The project will consist of summarizing one of the USFWS Wetland Community Profiles and creating a 10-15 slide PowerPoint presentation with recorded narrative. Students may work in pairs if desired. Students will also be responsible to review and grade other student’s presentations. Presentation grades will be based 40% on student review, 30% on TA review and 30% on instructor review.

**Exams** – The midterm exam will cover units 1-6 and the Final Exam will cover units 7-11.

**Final letter grade:** The final letter grade for the course will be based on current UF policies that can be found at [https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx](https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx) and are outlined below.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Course Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94-100</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>90-93</td>
<td>3.67</td>
</tr>
<tr>
<td>B+</td>
<td>87-89</td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td>84-86</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>80-83</td>
<td>2.67</td>
</tr>
<tr>
<td>C+</td>
<td>77-79</td>
<td>2.33</td>
</tr>
<tr>
<td>C</td>
<td>74-76</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td>70-73</td>
<td>1.67</td>
</tr>
<tr>
<td>D+</td>
<td>67-69</td>
<td>1.33</td>
</tr>
<tr>
<td>D</td>
<td>64-66</td>
<td>1.0</td>
</tr>
<tr>
<td>D-</td>
<td>60-63</td>
<td>0.67</td>
</tr>
<tr>
<td>E</td>
<td>&lt; 60</td>
<td>0</td>
</tr>
<tr>
<td>WF</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S/U</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Late assignments:** All assignments are due by midnight on the date requested. Assignments that are late will result in an initial 5% reduction in grade with an additional 5% deduction for every additional day the assignment is late.

**ONLINE COURSE EVALUATION PROCESS:**
Student assessment of the instructor and the course will be available at the end of the semester. Students are expected to provide feedback on the quality of instruction in the course using a standard set of university and college criteria. These evaluations are conducted online at [http://evaluations.ufl.edu](http://evaluations.ufl.edu). Evaluations are typically open for students to complete during the last two or three weeks of the semester. You will be notified of the specific times when they are open.

**TENTATIVE COURSE SCHEDULE:**

**Course Overview (Jan 6)**

**Unit 1 Introduction (Jan 6 & 8)**
- Definition of wetland
- Soil
Unit 2: Hydrology (Jan 13 & 15)
- Hydrologic cycle and Wetland Water Budget
- Precipitation
  Atmospheric moisture, Phase changes, Calculating aerial average precipitation
- Evaporation and Transpiration
  Pan evaporation, Energy budget method, Evapotranspiration, Interception through fall
- Infiltration
  Soil moisture, Infiltration methods
- Groundwater
  General properties, Groundwater movement, Surface connectivity
- Water budget calculations
- Tides
- Rainfall runoff
  Runoff processes: rational method, curve number approach, Hydrograph analysis, and Unit hydrograph theory
- Hydrologic indicators

Unit 3: Biogeochemistry (Jan 20, 22, 29, Feb 3)
- Upland vs. Wetland Soil Characteristics
- Reduction/Oxidation
- Microbial activity
- Oxygen availability
- Carbon Cycling
- Nitrogen Cycling
- Phosphorus Cycling

Field Trip to Natural Area Teaching Laboratory Wetlands (January 27)

Unit 4 Hydric Soils Feb 5)
- Legal definition of Hydric soils
- Soil Orders/Morphology
- Hydric Soil Delineation
- Field Indicators
Unit 5: Wetlands Vegetation  (Feb 10, 12)
- Environmental Stressors
  Inundation, anoxia, hypoxia, salts
- Biological Adaptations
  Vascular Plants, Animals
- Vegetative Succession
  Environmental forcing functions, Seed Banks, Landscape Patterns, Van der Valk’s Environmental Sieve concept

Unit 6: Integrated Wetland Systems and Communities  (Feb 17, 19)
- Ecosystem-Level Processes
- Hydrarch succession
- Environmental feedback loops and forcing functions
  Roll of fire
  Change in elevation due to sediment accumulation
  Raised bogs
- Upland Wetland interface
- Nutrient distribution related vegetative structure

Midterm Exam (Units 1-6) (Feb 24)

Unit 7 Wetland Classification (Mar 26)
- Types of Communities and Environmental Forcing Functions
  - Northern and Sub-Tropical Peatlands
  - Pocosins
  - Forested Wetlands
  - Riparian Wetlands
  - Salt Marshes
  - Mangrove Forests
- Classification

Unit 8: Wetland Wildlife (Mar 10, 12, 17)
- Major adaptations
- Animal Architects
  Modifying and creating wetlands
- Common Wetland Threats Today
  Direct and indirect impacts
- Duck Nesting and Ecology and Management

Unit 9: Anthropogenic Impacts on Wetlands (March 19 & 24)
- Hydrologic impacts
- Water quality impacts
- Exotic species impacts

Unit 10: Regulatory Issues and Policy (March 26 & 31)
- Laws
  History, Dredge and fill, water quality, habitat protection
- Delineation
History, agency jurisdiction, limits of protection
-Mitigation
 On site, mitigation banking, credits
-Water Quality
 Narrative and Numeric Nutrient Standards

**Unit 11: Constructed and Treatment Wetlands - Concepts and Considerations (April 2, 7 & 9)**
-Definitions and Justification of Restoration and Construction
  Mitigation, Habitat enhancement, Water quality
-Types of Constructed systems
  Restoration, Wastewater, Stormwater, Agricultural runoff, Mine drainage
-Location in Landscape
-Design Hydrology
  Depth, Hydroperiod, Residence time, Drawdown cycle
-Basin Morphology
-Water Quality Inputs
  Type of compounds, Sediments, BOD, loading rates
-Design options
  Surface flow, gravel bed, submerged aquatic, floating aquatic, vertical flow, horizontal flow,
-Vegetation
  Types, Exotics, Self-organization, Planting techniques
-Management Issues
  Performance, Wildlife, Mosquitoes, Sediments
-Cost Justification

**April 14 – Trip to Campus Stormwater Ecological Enhancement Project (SEEP)**

**April 16 - Course Summary**

**April 21 – Likely final exam: Units 7-11**

**UNIVERSITY POLICIES:**
**Academic Honesty:**
As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity.” You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes, exams). Furthermore, as part of your obligation to uphold the
Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

Software Use:
All faculty, staff and students of the university are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

Services for Students with Disabilities:
The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation.

0001 Reid Hall, 352-392-8565, www.dso.ufl.edu/drc/

Campus Helping Resources:
Students experiencing crises or personal problems that interfere with their general well-being are encouraged to utilize the university’s counseling resources. The Counseling& Wellness Center provides confidential counseling services at no cost for currently enrolled students. Resources are available on campus for students having personal problems or lacking clear career or academic goals, which interfere with their academic performance.

- University Counseling & Wellness Center, 3190 Radio Road, 352-392-1575, www.counseling.ufl.edu/cwc/
- Counseling Services
- Groups and Workshops
- Outreach and Consultation
- Self-Help Library
- Wellness Coaching

- Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/
Name: ____________________________________

What Country: __________ State: ___________ County: __________ do you call home?

What is a wetland?

Have you ever been in a wetland? How did you know?

Why did you take this course?

What do you expect to get out of this course?

What aspect of wetlands are you most interested in? (i.e. hydrology, biogeochemistry, constructed systems, policy, wildlife, vegetation, treatment wetlands, etc.)