COURSE SYLLABUS

ENVIRONMENTAL NUTRIENT MANAGEMENT

SWS 4116 / 5115

3 Credits

2102 McCarty Hall; Periods 2 & 3 T, R; Spring 2015

I. COURSE DESCRIPTION:
 Prerequisite: SWS 3022

 Consumption, manufacture, properties and reserves of fertilizer materials are discussed in order to familiarize the student with the fertilizers in general. The methods of application, effects on soil reactions and plant requirements of fertilizer nutrients are discussed in order to inform students relative to specific fertilizer materials.

II. COURSE OBJECTIVES:

 A. To familiarize the student with the levels of consumption and existing reserves of fertilizer materials.
 B. To familiarize the student with the source of materials, fertilizer terminology, formulation, chemical and physical properties and manufacture of commercial fertilizers.
 C. To acquaint the student with the basic chemical reactions of fertilizer materials with the soil and the fate of the nutritional elements whether it be loss by leaching, plant uptake, fixation or soil retention.
 D. To acquaint the student with the overall environmental impact of fertilizing crops to enhance production while limiting environmental consequences.

III. COURSE FORMAT: Three hours lecture per week, Tuesday 2nd & 3rd Periods: 8:30 - 9:45 and Thursday 2 & 3rd Periods: 8:30-9:45.

IV. INSTRUCTOR: J.B. Sartain, 155D McCarty Hall, 294-3111
 E-mail; sartain@ufl.edu
 Office Hours: 8-9 M-F, or anytime you drop by and I am in without guests.

V. TEXTBOOK:

VI. **CLASS ATTENDANCE:**

Not mandatory -- The student is responsible for all material presented in class as well as the assigned material.

VII. **GRADING SYSTEM:**

<table>
<thead>
<tr>
<th></th>
<th>SWS 4116</th>
<th>SWS 5115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-term Exam</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem sets</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Final Grade Determination:

- **A** 93-100
- **A-** 92 - 90
- **B+** 89 - 87
- **B** 86 - 83
- **B-** 82 - 80
- **C+** 79 - 77
- **C** 76 - 73
- **C-** 72 - 70
- **D+** 69 - 67
- **D** 66 - 63
- **D-** 62 - 60
- **E** < 60

X. **UNIVERSITY POLICIES**

A. STUDENTS REQUIRING SPECIAL ASSISTANCE: Students requesting classroom accommodations must first register with the Dean of Students Office. The Dean of Students will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodations.

B. CLASS DEemeanor: If you are unavoidably late, try to find you a seat with a little disruption to the class as possible. Please do not pass in front of the class room unless it is absolutely necessary. Please turn off all cell phones prior to coming to class.

C. MAKE-UP EXAMS OR THE REQUIRED WORK: Please use one of the methods of contact listed on the front page of this syllabus to contact the instructor regarding make-up exams or other requirements. Problem sets are due on the date stated on the critical dates sheet. Please try to make every effort to adhere to the printed schedule.
D. ACADEMIC DISHONESTY: As a result of completing the registration form at the University of Florida, every student has signed the following statement: "I understand that the University of Florida expects its students to be honest in all their academic work. I agree to adhere to this commitment to academic honesty and understand that my failure to comply with this commitment may result in disciplinary action up to and including expulsion from the University.” I also understand that copy written material should be used only for classroom purposes according to posted guidelines.

E. UF COUNSELING SERVICES: Resources are available on-campus for students having personal problems or lacking clear career and academic goals which interfere with their academic performance. These resources include: 1. University Counseling Center, 301 Peabody Hall, 392-1575, personal and career counseling; 2. Student Mental Health, Student Health Care Center, 392-1171, personal counseling; 3. Sexual Assault Recovery Services (SARS), Student Health Care Center, 392-1161, sexual assault counseling; and 4. Career Resource Center, Reitz Union, 392-1601, career development assistance and counseling.
XI. **COURSE OUTLINE:**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters</th>
<th>Approximate Lecture Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Course Outline, Objectives, etc</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>2. Special Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Problem Sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Historical Review</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>5. Fertilizer Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Fertilizer Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Fertilizer Usage</td>
<td>1/13</td>
<td></td>
</tr>
<tr>
<td>1. Production and use of commercial fertilizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. World consumption of plant nutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. US consumption of plant nutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Florida consumption of plant nutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Methods of Production of N Fertilizers</td>
<td>5</td>
<td>1/13</td>
</tr>
<tr>
<td>1. Nitrogen materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Chilean Nitrate of Soda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Coke-oven Ammonium process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Basic synthetic processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Direct oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cyanamide process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Claude-Haber process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Synthetic ammonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Hydrogen manufacture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Physical properties of NH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Ammonia derivatives</td>
<td>1/15</td>
<td></td>
</tr>
<tr>
<td>1. Nitric acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ammonium nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ammonium sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Urea and urea base materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Slow release N materials</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>1. IBDU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sulfur-coated urea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Urea formaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Osmocote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Oxamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Thermoplastic resin coated urea</td>
<td>1/22</td>
<td></td>
</tr>
<tr>
<td>7. Nutralene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Triazone and Triazine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. Coron
10. N-Sure
11. Nitrification inhibitors
 a. Nitrapyrin
 b. DCD
f. Nitrogen Solution Fertilizers
 g. Organic N sources

D. Nitrogen Uptake by Plants

E. Soil N and Associated Soil Reactions
 1. Organic N
 a. Composition
 b. Release of organic N Mineralization
 c. Amounts of soil organic N mineralized
 d. Availability of N from organic crop residues
 e. Amount of N in rain water
 2. Nitrification and Factors affecting nitrification
 a. Supply of NH$_4^+$
 b. Population of Nitrifiers
 c. Soil Reaction (pH)
 d. Soil Aeration
 e. Soil Moisture
 f. Soil Fumigation
 3. Reactions of NH$_3$ with the soil
 a. Reactions of NH$_3$ with clay
 b. Reactions of NH$_3$ with organic matter
 c. Factors affecting NH$_3$ retention by soil
 1. Texture
 2. Depth of Placement
 3. Moisture content
 4. Reactions of NH$_4^+$ with the soil
 a. Cationic nature of NH$_4^+$
 b. Influence of calcareous soils
 c. Factors affecting NH$_4^+$ fixation
 1. Clay minerals
 2. pH
 3. Availability of fixed NH$_4^+$
 5. Reaction of urea with soil
 a. Conversion of urea to NH$_4^+$
 b. Factors affecting loss of NH$_3$ from urea
 6. Fate of N fertilization
 a. Volatilization
 1. Denitrification
 2. Soil reaction/liming
 3. Soil moisture
b. Leaching
 1. Form of soluble N
 2. Slow-release N sources
 3. Influence of management

c. Run-off

d. Plant uptake efficiency
 1. N rate
 2. N source
 3. Other applied nutrients

7. Effect of N source on plant growth
 a. Reactions in the plant
 b. Effect of NH$_4^+$ and NO$_3^-$ on the plant
 c. Conditions under which NH$_4^+$ may not give as good results

F. Phosphate Rock Production
 6
 1. U.S. locations
 2. Mining Process
 3. World locations
 4. Reserves

G. Methods of Production of P Fertilizers
 2/17
 1. Mining of P material
 2. Manufacture of P Fertilizers
 a. Ordinary superphosphate
 b. Triple superphosphate
 c. Phosphorus acid
 d. Furnace acid
 e. Superphosphoric acid
 f. Monoammonium phosphate
 g. Diammonium phosphate
 h. Urea-urea phosphates
 i. Urea-nitric phosphates

H. Summary of properties of phosphate fertilizers
 2/19

********** REVIEW FOR MID-TERM EXAMINATION ****** 2/24

********** MID-TERM EXAMINATION ************ 2/26

********** SPRING BREAK ************ 2/28-3/7
I. Production of sulfuric acid 3/12

J. Soil Phosphorus Reactions 3/12
 1. Phosphorus reaction and availability in soil
 2. Quantity and Intensity Factors
 3. Forms of P in soil
 4. Reactions of fertilizer P with soils
 a. Definition of terms
 b. Nature of P reactions in acid soils
 c. Nature of P reactions in calcareous soils
 d. Reaction of OSP/CSP in acid/calcareous soils
 e. Reaction of MAP in acid/calcareous soil
 f. Reaction of DAP in acid soil
 g. Reaction of DAP in calcareous soil
 5. Factors influencing P retention in soils 3/17
 a. Type of clay
 b. Texture of soil
 c. Time of reaction
 d. Soil pH
 e. Temperature
 f. Soil organic matter
 g. Phosphorus status of soil

K. Phosphorus levels required in plant tissue 3/19
 1. Tissue P levels
 2. Contrasting effects of P fertilization on turfgrasses

L. Phosphorus leaching 3/24
 1. Relative movement of nutrient elements
 2. Influence of soil type
 a. Coated vs uncoated
 b. Organic soils
 3. Influence of amendment
 4. Influence of soil pH

M. Soil Testing for P 3/26
 1. Influence of extractant type
 2. Influence of time on P availability
 3. Phosphorus fertilization recommendations

N. Nutrient Management Plans

O. Fate of P in Agriculture
P. Potassium- Functions, Soil Sources, and Materials
 1. Functions of K in plants
 2. Sources of K for fertilizer production
 3. Mining systems
 4. Refining systems for potassium chloride
 5. Production of K fertilizer materials
 6. Sources of K in the soil
 7. Soil testing for K
 8. Amount of K in soil
 9. Plant availability of soil K
 10. Potassium fixation in soil

Q. Reactions of Potassium Fertilizers with Soil
 1. Factors affecting K availability
 2. Quantity of K required as fertilizer
 3. Potassium uptake as influenced by crop species
 4. Management practices for reducing K losses through leaching
 5. Effect of anion associated with K in K retention in soil
 6. Effect of K fertilizer source on leaching
 7. Effect of pH on K retention

R. Soil Acidity and Liming
 1. Types of acidity
 2. Standard liming materials
 3. Liming materials required properties
 4. Lime requirement

S. Effects of Lime and Calcium on Soils
 1. Soil reactions and lime
 2. Effects of aluminum
 3. Lime response in organic soils
 4. Calcium in acid soils
 5. Effect of calcium on nodulation of legumes
 6. Effect of lime of Mo availability
 7. Effect of lime rate and particle size on soil pH

T. Sulfur
 1. Introduction
 2. Sources of S in soils
 3. Forms of S in soils
 4. Sulfate adsorption
 5. Mechanisms of sulfate retention
 6. Sulfate co-precipitation with lime
 7. Reduced inorganic S
 8. Oxidation of elemental S in soil
 9. Organic S
10. Mineralization and immobilization of organic S
11. Practical aspects of S transformation
12. Soil testing for S

U. Use of Micronutrients in Agriculture 4/16

V. ********** REVIEW FOR FINAL EXAMINATION ********** 4/21

********** CLASSES END ********** 4/22

FINAL EXAM : FRIDAY MAY 1ST 7:30-9:30