Biogeochemistry of Wetlands
Science and Applications
June 23-26, 2008

Topic: Toxic Organic Compounds (Xenobiotics)

Learning Objectives

- Define xenobiotics
- Ecological significance of xenobiotics
- Sources and common classifications
- Environmental fate of xenobiotics
 - Abiotic pathways
 - Biotic pathways
What is a Xenobiotic?

- Xeno means foreign, Bios means life:
 - Xenobiotic is in essence a compound that is foreign to life
- Synonyms
 - Toxics, toxic [organic] substances, priority organic pollutants [POPs], endocrine disruptors
- Examples:
 - Pesticides, fungicides, herbicides, industrial toxins, petroleum products, landfill leachate

Are Xenobiotics an issue in Wetlands?

- Wetlands are often the receiving bodies of Agricultural and urban drainage
- Extent of xenobiotic contamination in wetlands
 - Approximately 5000 wetlands and aquatic systems impacted by pesticides
Are Xenobiotics an issue in Wetlands?

- Wetlands may be excellent pollutant removers (aerobic - anaerobic interfaces)
- Wetlands are not in the spotlight!
 - No wetland superfund site, etc.
 - Upland (aerobic) and aquifier (anaerobic) soil contamination and remediation is the driving force in our current know-how

Ecological Significance

- Lethal toxicity to biota
- Non-lethal toxicity to biota
 - Endocrine disruptors
 - Hormone mimicry
 - Reproductive disorders
 - Harmful mutation - DNA damage
Types of Xenobiotics

- Petroleum products (BTEX, MTBE)
- Pesticides (DDT, DDE.....)
- Herbicides (2,4D, Atrazine)
- Industrial wastes (PCB’s, aromatics)

Aromatic Compounds

- Benzene
- Toluene
- Napthalene
- Naphthol
- Phenol
- Biphenyl
Halogenated Compounds

- Carbon tetrachloride
- Chloroform
- Vinyl chloride
- 1,2-Dichloroethane
- Trichloroethylene
- Tetrachloroethylene
- Benzoates

Halogenated Aromatic Compounds

- Polychlorinated Biphenyls
 - PCBs
- Organochlorine Insecticides
 - DDT, Toxaphene, ...
- Chlorinated Herbicides
 - 2,4-D, 2,4,5-T, Atrazine.....
- Chlorinated Phenols
 - Pentachlorophenol
 - 2,4-dichlorophenol...2,4-D
 - 2,4,5-trichlorophenol.... 2,4,5-T
 - 2,3, and 4-Nitrophenol
Halogenated Aromatic Compounds

- Chlorobenzene
- 1,3-dichlorobenzene
- PCB
- DDT
- DDE
- DDD

Chlorinated Herbicides
- 2,4-Dichlorophenoxyacetic Acid ([2,4-D])

Chlorinated Phenols
- Pentachlorophenol
Halogenated Aliphatic Compounds

- **Trichloroethylene [TCE]**

- **Ethylene Dibromide [EDB]**

Sources of Xenobiotics

- Wetlands can receive:
 - Drainage from agricultural land [pesticides, herbicides]
 - Drainage from urban areas
 - Discharge from industrial facilities
 - Landfill leachates
 - Undetonated military explosives [TNT, HMX, RDX, etc.] in war zones and training bases
 - Spills [fuels, etc.] due to transportation accidents
 - Atmospheric deposition
Environmental Fate of Xenobiotics

• Need to know constants
• Fugacity Modeling
 – K_{OW} Octanol – water partition coefficient
 – K_{H} Henry’s Law constant
 – K_{a} Dissociation constant
 – K_{d} Partition [sorption] coefficient
 – K_{r} Reaction rate constants
 – MW Molecular weight
 – S_{w} Solubility in water

22/06/2008 WBL 15
Predicting the Fate of Xenobiotics

- Need to know the biogeochemical / environmental conditions in the wetland soils
 - Microbial consortia
 - Redox potential
 - Salinity
 - C content
 - Other e\(^{-}\) acceptors
 - pH
 - Temperature
 - N, P availability
 - Oxygen status
 - Vegetation type

Environmental Fate of Xenobiotics

- Abiotic Pathways
 - Sorption
 - Photolysis
 - Volatilization
 - Export
 - Leaching / surface run-off
Abiotic Pathway: Sorption

For organic chemicals not adsorbed by soils, Kd is equal to zero.

For a given organic chemical, sorption (Kd) is greater in soils with larger organic matter content. These chemicals move slowly in soils.

For a given soil, organic chemicals with smaller Kd values are sorbed to lesser extent and highly mobile.

Partition coefficient (L/kg) \(K_d = \frac{S \text{ (mg/kg)}}{C \text{ (mg/L)}} \)
Abiotic Pathway: Sorption

- Bioavailability of xenobiotics to degradation is strongly influenced by sorption
- Chemicals with low sorption coefficients are generally more soluble, and are more readily degraded
- Sorption of chemicals increases with amount of soil organic matter

Abiotic Pathway: Sorption

- Sorption may protect biota from toxic levels of chemicals
- High levels of DOM may increase the mobility of chemicals
- Chemicals with high sorption coefficients are generally less mobile
Environmental Fate of Xenobiotics

- Biotic pathways
 - Extracellular enzyme hydrolysis
 - Microbial degradation
 - Plant and microbial uptake
 - Bioaccumulation / magnification

Biotic Pathways:

Microbial ecology: why do microbes degrade Xenobiotics?
1) Derive energy
 i) Electron acceptor
 ii) Electron donor
2) A source of Carbon
3) Substitution for a similar “natural” compound: Cometabolism.

Cometabolism: organisms mediating the mineralization of a certain compound obtain no apparent benefit from the process
Energetics of Xenobiotic Biodegradation

- Energetics of aerobic and anaerobic benzoate degradation

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔG (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoate + 7.5O₂ → 2CO₂</td>
<td>-3175</td>
</tr>
<tr>
<td>Benzoate + 6NO₃⁻ → 3N₂ + 7CO₂</td>
<td>-2977</td>
</tr>
<tr>
<td>Benzoate + 8NO₃⁻ → 14NH₄⁺ + 7CO₂</td>
<td>-1864</td>
</tr>
<tr>
<td>Benzoate + 30 Fe³⁺ → 30 Fe²⁺ + 7 CO₂</td>
<td>-303</td>
</tr>
<tr>
<td>Benzoate + SO₄²⁻ → 7CO₂ + 3.75HS⁻</td>
<td>-185</td>
</tr>
<tr>
<td>Benzoate + S⁰ → 7CO₂ + 15HS⁻</td>
<td>-36</td>
</tr>
</tbody>
</table>

Thauer et al. 1977

Biodegradation

- Hydrolysis [+ H₂O]
- Oxidation [+ O₂]
- Reduction [+ e⁻]
- Synthesis [+ Functional Groups]
Biotic Pathway: Hydrolysis

- Extracellular, possibly not compound specific
 - Ether hydrolysis
 - \[\text{R-C-O-C-R} + \text{H}_2\text{O} \rightarrow \text{R-C-OH} + \text{HO-C-R} \]
 - Ester hydrolysis (Chlorpropham)
 - \[\text{R-C-O-C=O} + \text{H}_2\text{O} \rightarrow \text{R-C-OH} + \text{HO-C=O} \]
 - Phosphate ester hydrolysis (Parathion)
 - \[\text{R-C-O-P=O} + \text{H}_2\text{O} \rightarrow \text{R-C-OH} + \text{HO-P=O} \]
 - Amide hydrolysis (Propanil)
 - \[\text{R-N-C=O} + \text{H}_2\text{O} \rightarrow \text{C=O} + \text{H-N-R} \]
 - Hydrolytic dehalogenation (PCP)
 - \[\text{R-C-CL} + \text{H}_2\text{O} \rightarrow \text{-C-OH} + \text{HCl} \]

Biotic Pathway: Oxidation

- Key to xenobiotic detoxification and subsequent mineralization through oxidation:
 - Presence of molecular oxygen
 - Presence of selected aerobic or facultative aerobic microbial groups (fungi or bacteria)
 - Aromatic rings without functional groups
 - Benzene, toluene, naphthalene
Biotic Pathway: Oxidation

Benzene + O₂ → HO₂⁻ + O₂ → HO₂⁻ + O₂ → CO₂ + H₂O

Monooxygenase

Dioxygenase

Muconic Acid

Biotic Pathway: Reduction

- Reductive dechlorination
 - (TCE, PCB, PCP)
- Reduction of the aromatic ring
 - (BTEX)

6 H⁺ + 6 e⁻ →

- Reduction of the Nitro group
 - (Parathion)
 - R-C-NO₂ + 6H⁺ + 6e⁻ → C-C-NH₂
Reductive Dechlorination

Sequential replacement of Cl⁻ ions with H atoms
Usually results in accumulation of toxic intermediates
Promoted under highly reducing conditions (low redox potential) and high microbial activity

Acetate Oxidation with Different Electron Acceptors

<table>
<thead>
<tr>
<th>Electron acceptor</th>
<th>ΔG°' (kJ/mol Ac)</th>
<th>ATP (mol/mol Ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ / H₂O</td>
<td>-858</td>
<td>28</td>
</tr>
<tr>
<td>PCP / TeCP</td>
<td>-557</td>
<td>18</td>
</tr>
<tr>
<td>NO₃⁻ / NO₂⁻</td>
<td>-556</td>
<td>18</td>
</tr>
<tr>
<td>SO₄²⁻ / HS⁻</td>
<td>-56</td>
<td>2</td>
</tr>
</tbody>
</table>
Reductive Dechlorination of PCP in Methanogenic Everglades Soils

Reductive Dechlorination by Anaerobic Microorganisms

Van Dort and Bedard, 1991; Appl. Environ. Micro. 57:1576-1578

22/06/2008 WBL
Biotic Pathway: Reduction

\[
\text{NO}_2^- + 6e^- + 6H^+ \rightarrow \text{NH}_2^- + H_2O
\]

p-nitrophenol \[\text{OH} \] \[\text{OH} \]

p-aminophenol

Anaerobic Degradation of 2,4,6-trinitrotoluene [TNT]

Boopathy et al. 1993 Water Environ. Res. 65:272-275

![Graph showing degradation of TNT with different electron acceptors](image-url)

- No electron acceptors
- Sulfate Reducing
- Nitrate Reducing
- \(H_2 + CO_2 \)

Fate Processes of Chlorophenols in Soil

- Microbial transformations
 - Reductive dechlorination
 - Aerobic catabolism
- Sorption

Coupled Anaerobic-Aerobic PCP Degradation

Anaerobic: Cl⁻ removal

Aerobic: Cl⁻ removal and ring cleavage

PCP + O₂ → CO₂ + H₂O + 2Cl⁻
Biotic Pathway: Polymerization

- Oxidative coupling under aerobic conditions
- Recalcitrant humic-like polymers. Example TNT

2,4,6-trinitrotoluene \rightarrow 2,2',6,6'-tetranitro-4,4'-azoxytoluene

Field et al. 1995. Antonie van Leeuwenhoek 67:47-77

Biotic Pathway: Polymerization

2, 4-dichlorophenol \rightarrow 2,3,7,8-dibenzo-p-dioxin

Field et al. 1995. Antonie van Leeuwenhoek 67:47-77
Case Study: Lake Apopka

- 1940’s marshes of lake Apopka drained for agricultural use (19,000 acres)
- 1950-1990 extensive eutrophication and numerous fish / alligator kills
- 1992 alligator / turtle population crash
 - Reproduction problems, gender definition
 - 1980 Dicofol spill (90% gator die-off)
Case Study: Lake Apopka

- 1997 muck farm buy out by state ($100m)
- 1998 marsh restoration and reflooding begins (July)
- November 1998 massive wading bird kill on Apopka with dispersion (est. 1000+ birds)
- Necropsy found DDT, Diedrin, Toxaphene

Contaminant Exposures and Potential Effects on Health and Endocrine Status for Alligators in the Greater Everglades Ecosystem

Xenobiotics in Wetlands

- Sources and examples
- Aerobic-Anaerobic interfaces
- Fate dictated by partitioning
- Abiotic pathways
 - Sorption, photolysis, volatilization
- Biotic pathways
 - Hydrolysis, Oxidation, Reduction, Synthesis
 - Mediated by microbial consortia
 - Biogeochemical controls
 - Environmental controls