3 Environment impacts (assessment)

- Site investigation (Chap. 2 & 3)
 - QA/QC (Chap. 3)
 - Sampling (Chap. 3)
- Background concentrations (Chap. 3)
- Contaminant-soil interactions
 - Bioavailability
 - Sorption/desorption (Dr. Uttam Saha)
 - Speciation/bioavailability/remediation (Dr. Don Sparks)
- Shining light on biogeochemical processes in the earth’s critical zone
- Assessment
 - Fate and transport (Appendix c)
 - Dr. Dean Rhue (W): Tracking arsenic in soils/landscapes
 - Dr. Bin Gao (F): Colloids-facilitated contaminant transport
 - Risk assessment (Chap. 5-6 & Appendix B, F-J)
 - Toxicology
 - Dr. Bitton-M

Fate and Transport

- Fate
 - Where the contaminant moves
- Transport
 - How the contaminant moves
- Factors affecting fate & transport
 - Properties of contaminant
 - Properties of matrix-soil, water, & air
 - Environment-temperature & precipitation

Soil composition

Important factors-contaminant

- Water solubility-water/solid (Ws)
 - Solid contaminants are less mobile than liquid
 - One of the most important
- Volatilization-water/gas (H)
 - Important for mass transfer to atmosphere
 - Henry’s law constant (H) and vapor pressure
 - A measure of the extent of chemical partitioning between air and water at equilibrium
 - Relative tendency of a chemical to volatilize from water (water solubility) to air (vapor pressure)
 - \(H = \frac{C_{\text{air}}}{C_{\text{water}}} \)

Important factors

- Partition coefficient
 - Water/air (\(K_{\text{wa}} \)): volatility
 - \(K_{\text{wa}} = \frac{C_{\text{water}}}{C_{\text{air}}} = 1/H \)
 - Octanol/water (\(K_{\text{ow}} \)): bioaccumulation
 - \(K_{\text{ow}} = \frac{C_{\text{octanol}}}{C_{\text{water}}} \)
 - Hydrophobic: \(K_{\text{ow}} < 10 \) or log \(K_{\text{ow}} < 1 \)
 - Hydrophilic: \(K_{\text{ow}} > 100 \) or log \(K_{\text{ow}} < 2 \)
Relationship of molecular structure to K_{OW}

- Chlorinated benzenes
- Hydrophobic: $log K_{OW} > 2$

Important factors

- Partition coefficient
 - Water/air (K_w): volatility
 - $K_w = C_{water}/C_{air} = 1/H$
 - Octanol/water (K_{OW}): bioaccumulation
 - $K_{OW} = C_{octanol}/C_{water}$
 - Hydrophilic: $K_{OW} < 10$
 - Hydrophobic: $K_{OW} > 100$
 - Soil/water (K_d): mobility
 - $K_d = C_{soil}/C_{water}$
 - Chemical & soil specific
 - Organic carbon adsorption (K_{OC}): adsorption
 - $K_{OC} = K_d/C_{OC}$
 - Chemical specific

Relationship of molecular structure to K_{OW}

- Benzene
- Naphthalene
- Benzanthracene
- Anthracene
- Benzopyrene
- Hydrophobic: $log K_{OW} > 2$

Pesticide	No. of values	Mean K_d
COOH acid | | |
2,4-D | 23 | 0.49
Imazaquin | 37 | 0.81
Imazaquinpyr | 24 | 1.13
Picolam | 51 | 0.47
2,4,5-T | 8 | 1.24
NISO$_2$ acid | | |
Chlorimuron | 8 | 1.10
Chlorsulfuron | 15 | 0.69
Flumesulam | 36 | 2.88
Fomesafen | 5 | 4.52
Sulfometuron-methyl | 15 | 0.97
Triflusulfuron-methyl | 5 | 0.78

Webber et al., 2004
Important factors

- **Bioconcentration factor (BCF): bioaccumulation**
 - \(\text{BCF} = \frac{C_{\text{tissue}}}{C_{\text{water}}} \) (similar to \(K_{\text{ow}} \))
 - \(\text{BCF} = \frac{C_{\text{tissue}}}{C_{\text{soil}}} \)
 - Concerns: \(\text{BCF} > 100 \)

Bioconcentration factors of fish (EPA, 1990)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>BCF (L kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>28</td>
</tr>
<tr>
<td>Benzene</td>
<td>44</td>
</tr>
<tr>
<td>Ni</td>
<td>47</td>
</tr>
<tr>
<td>Cd</td>
<td>81</td>
</tr>
<tr>
<td>Cu</td>
<td>200</td>
</tr>
<tr>
<td>Chloradane</td>
<td>14,000</td>
</tr>
<tr>
<td>DDT</td>
<td>54,000</td>
</tr>
<tr>
<td>PCBs</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Important parameters

- **Water solubility-water/solid (Ws)**
- **Volatilization-water/gas (H=C\(_{\text{air}}\)/C\(_{\text{water}}\))**
- **Partition coefficient**
 - Volatility: water/air (\(K_W = C_{\text{water}}/C_{\text{air}} \))
 - Bioaccumulation: octanol/water (\(K_{\text{ow}} = C_{\text{octanol}}/C_{\text{water}} \))
 - Mobility: soil/water
 (\(K_d = C_{\text{soil}}/C_{\text{water}} \) & \(K_{\text{GC}} = K_d/C_{\text{octanol}} \))
- **Bioaccumulation: bioconcentration factor**
 (\(\text{BCF} = \frac{C_{\text{tissue}}}{C_{\text{soil}}} \) or \(= \frac{C_{\text{tissue}}}{C_{\text{water}}} \))
- **Mobility in groundwater: retardation factor**
 (\(R = 1 + D_b \times K_d / \text{porosity} \))