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In the last 30 years there have been significant advances in technology that have made 

agricultural operations faster, more productive, and more efficient. There can be significant 

barriers to producer entry from the family farm scale, due to cost, accessibility, and the 

knowledge required to implement many of these technologies. Many of the technologies that can 

greatly improve a producer’s operations are proprietary products that may only be usable in 

conjunction with expensive agricultural equipment or service providers. It is often not 

economically feasible for smaller operations to purchase the required equipment and accessories, 

which can cost hundreds of thousands of dollars. The initial investment required to implement 

precision agriculture technologies has been cited as a reason for farmers to be reluctant adopting 

them (Blasch 2020). There are technology options that can become effective elements of a farm 

management plan at every scale. From software to physical products, there are choices available 

to improve both crop and livestock operations. This report will review some prominent methods 

of data collection for agricultural enterprises and then go on to review tools that can be utilized 

to transmit and transform that data into a form that is valuable to the producer (Figure 1). 

Implementing IT related technologies for use in agricultural enterprises can increase profitability 

and efficiency to farmers of many different scales. 
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The Precision Agriculture Landscape 

New products geared towards farming operations are coming onto the market rapidly as 

technology continues to improve and evolve. As a farm manager, it may become overwhelming 

to determine what products can serve to improve operational efficiency, profitability, and 

sustainability. It is important to evaluate the needs of a specific farm to determine which 

technologies are the best fit. There are many considerations that ought to be made before 

investing time and money in a new product for a farm. Cost, availability, climate, internet access, 

access to labor, and the type of farming operation and commodities are a few things that are 

important to consider before choosing a product.  

 

Figure 1. Overview of Smart Agriculture technologies covered in this report. 
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Figure 1 represents the precision agriculture landscape that can incorporate many types of 

technologies into a system for the collection, processing, and transmission of farm related data. 

Many of these technologies are dependent on and can be used in conjunction with one another. A 

typical farm that is using precision agriculture techniques will likely utilize many of the 

technologies and products listed here for their farm management purposes. Each farm’s practical 

implementation of precision agriculture technologies may vary greatly. On a very basic level, 

precision agriculture in the present day will generally consist of a variety of sensors for data 

collection, an internet connection and method to transmit data from the sensors where it was 

collected, and software program that stores the data and processes it or analyzes it into a form 

that the farmer can use. 

Tools for Data Collection: In-field Sensors 

Sensors are a cornerstone of precision agriculture, both for field monitoring and for the 

application of products. Sensors can be used to control the application rate of seed, water, 

fertilizer, pesticides, etc. and can be incorporated into traditional agricultural machinery to make 

it “smarter”. By applying amendments and products to the crop production system in an optimal 

way and analyzing data collected on a crop’s growth environment, growers can increase their 

profitability and sustainability through responsible resource management. These should be 

critical objectives for agriculture to help address the challenges that the world is facing via 

climate change and a growing population (Monteiro et al., 2021). Location sensors, or Global 

Positioning System (GPS) devices, are a critical part of many agriculture-specific IoT 

technologies (Elijah et al., 2018) and can provide additional value to other types of sensors when 

they are paired together. For example, a tractor with a variable rate sensor and a GPS sensor can 

collect valuable geospatial data in addition to application rate data that can then be sent to an 
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FMIS to be visualized on a map by a farmer. Location data from GPS sensors can be especially 

valuable to producers that are farming over expansive areas or with multiple employees to 

manage. 

There are diverse ways to apply sensors into traditional agricultural farm machinery, such 

as seeders, tillers, tractors, combines, hay baling equipment, sprayers, spreaders, etc. A common 

application of integrating sensors with agricultural machinery is with variable rate technology 

(VRT). The system utilizes a previously created prescription or recommendation that 

communicates the rate of seed, fertilizer, or other product that needs to be applied across a 

predefined, mapped area, with the help of GPS for positioning across the field . In the context of 

VRT, a recommendation is a digital file that contains a target rate that should be applied to a 

field per zone (Šarauskis et al., 2022). In some cases, the required rate of application can be 

determined in real time by sensors installed on the machine. Rates are determined using a 

combination of soil data, terrain data, crop data from previous seasons, or other types of data 

(Monteiro et al., 2021). An example of VRT is precision seeding or variable rate seeding, where 

sensors are incorporated into a planter to control seed spacing and depth. This can optimize 

germination rates and plant spacing based on landscape conditions, potentially leading to greater 

yields. Variable rate seeding operations can be carried out based on different parameters of the 

area of interest, including soil conditions and nutrient profile, topography, and weather 

information. Seed drills are adjusted using preferred parameters and the integration of precise 

GPS sensors allows the operator to apply seed in a way that optimizes yield and minimizes waste 

(Šarauskis et al., 2022). Farmers can access variable rate technologies by visiting their local 

agricultural machinery dealerships where they can learn about pricing, installation, and how to 

use the technology. 
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Sensors that monitor a crop’s growing environment, such as humidity, light intensity, soil 

conditions, and weather conditions can provide critical information to allow a grower to improve 

their yield and crop quality (Garlando et al., 2020). Different types of soil sensors can monitor 

soil conditions to help producers make decisions about tillage, irrigation, nutrient management, 

and even whether to drive in the field to avoid compaction. Some of the main types of soil 

sensors monitor soil moisture, soil solute/salinity concentration (via electrical conductivity 

sensors), soil clay and organic matter content, and soil nutrient concentrations (Monteiro et al., 

2021). 

A commonly used soil moisture sensor on  some small farms is a Watermark™ sensor 

that is used to guide farmers with irrigation timing (Figure 2).  

Figure 2. 900M datalogger (left) and Watermark sensor (right). (Dong et al., 2020) 

Watermark™ sensors (Irrometer, Riverside, CA) are affordable compared to other sensor 

options. They can be used to take individual measurements in a field using a handheld reader or 

they can be left in the field to record data continuously when paired with a data logger 
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(Thompson et al., 2006). This sensor type  contains a granular matrix that can measure changes 

in soil matric potential. According to Dong et al. (2020), soil matric potential is the “physical 

force required for the plant to move water into its root system.” Watermark sensors work by 

monitoring changes in soil tension, which in turn provides information about soil moisture by 

providing a value from 0 to -239 kPa, with 0 kPa indicating the soil is fully saturated. University 

extension irrigation guidelines help growers to determine the amount of water they need to apply 

based on the values returned from their readers or loggers and based on their soil type (Dong et 

al., 2020). While soil moisture, electrical conductivity, and temperature can be collected real-

time using relatively inexpensive sensor options, more complex and comprehensive soil 

chemical testing is usually achieved through manual soil collections and analysis using 

university or commercial labs. 

Plant focused sensors assess potential crop health, allowing farmers to quickly respond to 

plant stressed caused by environmental conditions, pest and disease pressures. Plant focused 

sensors may also have post-harvest applications when it comes to determining produce quality, 

moisture percentages of grains, etc. Imagery based sensors and VOC (Volatile Organic 

Compound) detecting sensors provide important information about plant health and crop quality. 

Plant imaging can help with field scouting by locating with high accuracy where plant stress 

from environmental conditions and diseases might exist within a field. For example, Normalized 

Differential Vegetative Index (NDVI) is a widely used metric to monitor crop and plant health 

(Garlando et al., 2020). NDVI “is a measure of the ratio of reflectance in the near infra-red (NIR) 

and red wavebands” according to Stamford et al. (2023). Data utilized for NDVI calculations is 

typically collected through spectral imaging devices. The cause of stress often still requires 

interpretation by the farmer of service provider. There are many different types of these devices 
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on the market, and they can vary greatly in price. For example, spectral imagery through drone 

technology will typically be more expensive than tractor attachments, and especially hand-held 

devices. It is common for these devices to cost from $2000 to $5000. There are less expensive 

devices available, but they may not provide data that are as accurate or cover an adequately large 

growing area as compared to some of the more sophisticated devices. Stamford et al. (2023) 

proposed a design for an effective low-cost system for farmers to calculate NDVI using a 

Raspberry Pi (a simple computer) and digital cameras. Solutions like this, while affordable, 

involve sourcing materials and assembling the system, and this may be a barrier to some farmers 

that do not possess these technical skills. Another potential challenge associated with spectral 

imaging is the transfer and interpretation of data after it is collected (Stamford et al., 2023).  

Tools for Data Collection: Livestock Sensors 

As countries continue to become wealthier and populations increase, global animal 

product consumption is expected to increase by 70% by 2050 (Berckmans 2017). This increased 

demand for animal products is expected to increase the density of livestock on farms, especially 

as the number of farmers and individual farms are decreasing. Higher concentrations of livestock 

and poultry on farms present risks to human and animal health, especially through diseases 

(including zoonotic diseases). On top of this, concentrated animal populations can increase the 

risk of antibiotic resistance when animals are consistently given antibiotics over time to mitigate 

disease. Concentrated livestock and poultry farms also present environmental problems 

(Berckmans 2017) like nutrient runoff from improperly managed animal waste. It has been 

estimated that animal agriculture contributes to 14.5% of anthropogenic greenhouse gas 

emissions globally (Kristiansen, et. al 2021). The increased demand for animal products along 

with the industry’s contribution to climate change make it critical for farmers to manage their 
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operations in a way that is efficient, ecologically sound and with as little waste as possible. 

Precision Livestock Farming (PLF) is a tool that may be able to alleviate some of the concerns 

that scientists predict farmers will face in the next 25 years or so.  

Precision Livestock Farming is a method of farming that incorporates a variety of data 

types (usually collected from sensors, cameras, or microphones) to aid with the management of 

livestock and poultry operations. Precision livestock technologies can be an important factor in 

monitoring animal health, weight gain, behavioral patterns, location, and potential environmental 

impacts of livestock operations (Berckmans 2017). Sensors can provide a lot of critical 

information related to animal welfare. They can quickly and remotely alert the producer (via a 

connection to a web application) to changes in animal behavior that may indicate that further 

intervention is needed (Džermeikaitė et al., 2023). An example of this is through biometric 

sensing. Biometric sensing is an umbrella term for a variety of technologies that monitor 

behavioral and biological functions of livestock. Biometric sensing has become commonplace on 

many farms to reduce the labor associated with monitoring animal wellbeing on a large scale 

(Neethirajan and Kemp 2021) .  

Thermal infrared imaging is a type of biometric sensing that can measure an animal(s) 

temperature without coming into physical contact with the animal itself (Neethirajan and Kemp 

2021). Thermal imaging is done through the installation of cameras in the livestock’s 

environment. It works by detecting infrared radiation that is released from the animal’s surface. 

This results in several practical applications for livestock farmers. For example, the temperature 

distribution of an animal’s body can be used to make inferences about its stress level and 

potential illnesses (direct indicators of animal wellbeing) by identifying changes in blood flow. It 

can also be used as an estrus detection tool and to monitor how efficiently an animal can 
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metabolize feed (de Alencar Nääs et al., 2014). Sensors may be connected to software 

applications via the internet, allowing data to be easily accessible by users, even when they are 

far away from their farm. On farms of all scales, monitoring each animal can help to ensure the 

health and welfare of the animal which in turn ensures higher profits for the producer, and a 

quality product for the end customer. 

Dairy operations have some unique considerations that need to be made when 

considering the implementation of PLF technologies. Part of the reason for this is that a very 

perishable product (milk) is being introduced into the farm management plan that requires 

additional monitoring and logistical considerations. Tracking reproductive cycles is also another 

important consideration for dairy (and other types of livestock) farms as they have important 

implications for the yearly schedules and profitability of operations. Many livestock sensors on 

the market today can be used to track the menstrual cycle of animals to optimize breeding 

practices. According to Kaur et al., there are already some commonly used PLF technologies on 

dairy farms, including monitoring systems for “daily milk production, milk composition, 

activity, cow body temperature, milk conductivity, estrus detection monitoring, and daily body 

weight.” Automated milking systems are another time saving technology that can greatly benefit 

dairy operation (Kaur et al., 2023). Robotic milking systems can reap huge labor savings for a 

dairy farm but purchasing them is a big financial risk due to their high cost of installation. Recent 

advances in automated milking systems integrate sensors that can collect data on milk quality 

and the health of the cow during milking. The integration of predictive modeling (a type of 

artificial intelligence) with data collected from automatic milking systems can help dairy farmers 

make improved operational decisions. This type of modeling can provide better insights to the 

farmer about the health of the cow, milk yields, and milk quality (Ji et al., 2022). 
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Most PLF relies on continuous monitoring of individual animals or populations of 

animals. 24/7 monitoring allows producers to identify when there is a significant change in an 

animal’s health that may need attention. This may be identified through the monitoring of a vital 

sign like temperature or heart rate, or activity level. Live monitoring is important because a 

change in the animal’s vital signs or behavioral patterns can occur very quickly in the event of an 

illness or injury. Precision livestock technology can provide value in many ways including 

detection of illness at an early stage, precisely calculating the amount of feed needed for desired 

weight gain, and more (Berckmans 2017). The ability for precision livestock farms to remotely 

monitor animal stress or wellbeing using a small amount of human labor has the potential to 

improve animal welfare and allow producers to make management decisions based on that data. 

This is something that consumers demand and therefore, it can create opportunities for farmers to 

command a higher price for their products compared to producers not using these technologies \ 

(Kaur et al., 2023) through animal welfare related or organic certifications.  

Some challenges exist when collecting data on livestock. The data collected through 

sensors is only beneficial to the producer if there is a way to analyze it and use it for decision 

making. Additionally, data may come in different forms and from different platforms, making it 

difficult to analyze information, even though it may still be important to the operation (Lovarelli 

et al., 2020). An example of a challenge with data collected through PLF is The European Union 

Precision Livestock Farming Project which monitored fattening periods for pigs for three years 

and yielded 120 terabytes of imagery alone (not including the sound data that was also collected) 

(Berckmans 2017). The enormous amount of data collected through PLF (especially on animals 

with a long lifespan) can be difficult for existing IT infrastructure to handle. Additionally, most 

of the data that is collected is rather insignificant, until there is a drastic change (like a sudden 
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increase in heart rate) or emergency that causes one of the parameters to drastically shift (Kaur 

2023). It is important for producers to use programs that utilize algorithms to help filter out or 

“clean” the data that is collected so that it can be presented to the producer in a format that is 

valuable to them. This data may then be presented to the farm manager through a software 

program (via a web or mobile application) with a user interface where they can use the cleaned 

data to make management decisions. 

Tools for Data Collection: Digital Mapping in Agriculture 

Light Detection and Ranging (LiDAR) technologies utilize lasers and sensors to collect 

elevation data across a target area (Huang et al., 2022). LiDAR plays an important role in 

agriculture due to its versatility, ability to cover large areas of land, and noninvasive methods of 

collecting data. The technology was used initially in the United States in the 1970s by the 

aerospace industry (Rivera et al., 2023). Its application was invaluable for geologists for 

mapping the Earth’s surface and more recently its use has expanded into many different 

industries, including hydrology, surveying, construction, architecture, archeology, self-driving 

cars and agriculture. LiDAR is non-intrusive and data collection can be collected day or night, 

since radiation does not negatively impact its operation.  

LiDAR systems can be either land or air based. Land-based systems can include a 

stationary sensor setup (such as a tripod) or can be attached to a moving vehicle or tractor. Air 

based systems are generally installed on drones or aircraft (Debnath et al., 2023) According to 

Debnath et al. (2023), “Most airborne LiDAR systems consist of LiDAR sensors, data storage 

devices, an on-board computer, a global positioning system (GPS) and an inertial measurement 

unit (IMU).” Land based LiDAR systems can have valuable applications in areas where aircraft 

are not allowed or able to access (Debnath et al., 2023).  
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LiDAR sensors work by releasing “pulsed light waves” that hit nearby objects and then 

return to the sensor. The x, y, z location of the surface is calculated using the speed of light, the 

travel time for a given pulse to return to the sensor, the direction of the pulse, and the exact x,y, 

and z location of the sensor (Debnath et al., 2023). The number of sensors employed in a LiDAR 

system and the density of light pulses can impact the quality of the data collected. Data collected 

from the system is stored in a “point cloud” (Rivera et al., 2023). LiDAR data usually provides 

value to an end user through the creation of 3D models that are created with the addition of data 

from other technologies (Rivera et al., 2023).  

LiDAR can be used for many different types of valuable data collection in agriculture. 

For example, LiDAR can help determine soil characteristics, topography, leaf area index (LAI), 

crop health and growth, and spray drift for agricultural products. LiDAR can detect variation in a 

landscape, which is helpful for many different land management purposes, including for 

measuring crop or plant height (Rivera et al., 2023). One important application of LiDAR in 

agriculture is the use of LiDAR data to map the location and flow of water in a field (Debnath et 

al., 2023). This is very valuable data for crop and livestock producers but is especially useful for 

planning irrigation or estimating yield and disease pressure from a given area in a plot. LiDAR 

can also be utilized in orchards and vineyards to help determine a plan for pruning so that the 

appropriate light penetration through the canopy occurs(Rivera et al., 2023).  

Something to consider before investing in LiDAR technology is the quality and 

processing of the data that will be collected. For the best results, high resolution images must be 

obtained and an accessible way to present the data to the end user must be available. According 

to Debnath et al., there are still developments that need to be made for affordable and accurate 

software programs to become available to LiDAR users for data analysis. Some LiDAR systems 
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struggle to differentiate between weeds and crops in a field. This is very problematic for most 

agricultural contexts when someone is using this technology to help determine plant growth, 

yield, height, or biomass of the crop that is planted (Debnath et al., 2023). Different machine 

learning techniques can be applied to LiDAR data to help filter out important data and improve 

the quality of data so that it is more useful to the end user (Huang, et al., 2022). Another 

drawback of LiDAR is that its implementation can be costly, especially for more advanced 

imagery collection and quality. Many farmers may see this as a barrier to utilizing the technology 

in their operations (Rivera et al., 2023), but aerial images can be very valuable to a crop 

producer, especially those on a larger scale that may be limited in their ability to frequently 

monitor their entire growing area (Monteiro, et al., 2021). 

Tools for Data Transmission and Management: Internet of Things (IoT) 

The Internet of Things (IoT) is a network of different devices that utilize the internet to 

collect data and to transmit information between one another, through unique identifiers (UIDs) 

(Elijah et al., 2018). The main features of the IoT are a wireless internet connection, a data 

collection method (mainly via sensors), a modem to communicate to the cloud, and a mechanism 

to process and store data (Bulut & Wu 2024). Data storage is through what is known as a “data 

lake.” Data is oftentimes delivered to an end-user through a user interface where the data may be 

further analyzed by the program to provide additional information to the user. In an agricultural 

context, IoT usually utilizes 4 steps to get data to the end user. According to Elijah et al. (2018), 

these four steps are:  

1. Data collection 

2. Data transfer to IoT devices 

3. Data and image analyses 

4. Visualize and manage a field operation via an app 
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From a broad perspective, the IoT can provide several important benefits to a variety of 

industries including improving efficiency and management decisions (Misra et al., 2022). IoT 

technology adoption in agriculture can lead to improved yields, increased profits, more 

sustainable production practices, and improved human health impacts from increased food 

security and environmental benefits (Bulut & Wu 2024). In addition to directly impacting crop 

and livestock production, IoT systems can serve as an important tool for planning, logistics, 

postharvest handling, and transportation. When these things become more efficient, 

sustainability and profitability can be positively impacted. An example of this might be reduced 

fuel usage when someone operating a tractor uses IoT enabled devices to choose the best route 

for driving to their work for the day. Small changes in daily, repetitive tasks that are done 

frequently may reap large time and fuel saving benefits over time for an operation. With 

consumers demanding more transparency around the production and distribution practices of 

their food, farmers can provide valuable data to consumers at every step of the supply chain. IoT 

can provide data about every place their food has been, from farm to table, so that consumers can 

be confident about the safety of an agricultural product. For example, a grower can provide 

confidence to consumers that their produce was not affected by some kind of foodborne illness 

outbreak because they can prove the origin of the product using data collected via IoT. This may 

provide additional value to the consumer and profit to the producer (Elijah et al., 2018).  

IoT technology can be particularly powerful to producers when it is paired with 

agricultural machinery. In crop production systems, tractors, sprayers, combines, and other types 

of agricultural machinery can be integrated into an IoT network. These smart machines can 

improve the efficiency and quality of many different agricultural field operations including 

tillage, planting, spraying, spreading, and harvesting. IoT is the mechanism that allows GPS 
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sensors to communicate with a VRT sensor on a planter so that planting rate data is associated 

with geospatial data, as discussed previously. It is also the mechanism that communicates the 

data collected from field tasks to the end user via a web or mobile application and vice versa. IoT 

solutions are becoming more widely available for traditional agricultural machinery, robots, and 

unmanned aerial vehicles (UAVs) (Elijah et al., 2018).  

There are a variety of challenges that may hinder IoT technology adoption by farmers. 

Barriers that exist are different regionally and depend on which technologies are available and 

the legal status of technologies in different countries. Data security and privacy is a developing 

field for IoT systems which may be a concern to farmers (Elijah et al., 2018). Security threats 

can also exist and be costly when autonomous machinery and implements are a part of an IoT 

system due to the huge impact that impaired GPS systems and sensors can have on autonomous 

field operations (Demestichas et al., 2020). Another major challenge of IoT adoption includes the 

initial financial investment required and for certain IoT technologies, especially those that 

require newer tractors to function. Costs vary greatly depending on the operation size and 

technology being purchased, but hardware required for the system can incur a large up-front cost. 

Additionally, the cost of internet service and network access can be beyond the reach of some 

growers (Elijah, et al. 2018). 

Tools for Data Transmission and Management: Artificial Intelligence (AI) 

In general, artificial intelligence refers to algorithms in machines or devices that can 

perform a new service or action based on patterns learned from previous data (Smith 2020). For 

example, in machine learning, a field of AI, prediction models are made by taking a dataset 

which contains multiple parameters and known outcomes and breaking it into training, 

validation, and testing datasets. First, the model makes predictions on the training data, then the 
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model’s predictions are evaluated against the validation dataset. If the model performed poorly 

with the validation data, it is revised and re-trained by the training data. This process is repeated 

until the performance reaches a predetermined acceptable level. Then, the final performance is 

evaluated again using the testing dataset (Genç & Tunç, 2019). After training, validating, and 

testing the AI model can be used on novel data to make predictions. 

Agricultural enterprises are excellent candidates for the application of artificial 

intelligence due to the complex nature of their operations. The constantly changing input of 

various types of data (weather, soil conditions, crop health, animal health, etc.) can make 

management and decision-making challenging for producers. Additionally, many farms cover a 

large amount of acreage and exist in remote, difficult to access areas. Remote monitoring in 

conjunction with AI can be a very powerful tool for managing large acreage without having to 

spend significant time and labor to monitor various land tracts. Because agriculture is so weather 

and climate dependent, AI can also inform decision making (Smith 2020). This will become 

increasingly important as the climate continues to change.  

Figure 3 represents four types of artificial intelligence analytical methods which describe 

how AI can be used and to which degree human intelligence is required (Smith 2020). 

Descriptive analytics is the simplest form of analysis, which only summarizes or describes data 

and involves the largest need for human intelligence to make decisions. Diagnostic analytics 

identifies patterns in data and can be used to hint at causality with the help of human intelligence. 

AI predictive analytical methods also find patterns in data but can make predictions in addition 

to identifying them. Finally, AI prescriptive analytical methods find patterns in the dataset, but 

can also find solutions to the problems as well. Unlike the other analytical methods, prescriptive 
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AI can be configured to make decisions automatically based on the solutions it finds without 

human intervention (Smith 2020). 

Figure 3. AI can be represented by different computational analytic categories that then require 
different degrees of human processing prior to reaching a final action (Smith 2020) 

Applying the AI analytical methods from Smith (2020) would give the following 

examples in livestock farming. Using computer vision to count livestock (Sarwar et al., 2018) is 

one example of using descriptive AI, while detecting illnesses such as mastitis using milk 

measurements from automated milking systems (AMS) is a diagnostic use of AI (Ozella et al., 

2023). In both cases, a lot of human decision making is still required, such as determining what 

conclusions to draw from livestock counts or determining how to treat a given illness. Utilizing 

machine learning on cow behavior, health, milk quality and environmental conditions to predict 

future milk yield, is an example of predictive AI. The recommendation or implementation of 

mitigating actions is an example of prescriptive AI (Ji et al., 2022). Additionally, various forms 

of agricultural data and imagery can be “cleaned” by using artificial intelligence to remove 

extraneous portions of the data or filtering the data. This allows for potentially more accurate and 

quicker analysis of the data, therefore providing additional value to the agricultural enterprise 

(Wongchai et al., 2022). The field of artificial intelligence is rapidly expanding and it can be 
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challenging to utilize without specialized knowledge. However, more agricultural products and 

software systems are being developed that includes an AI component that does not require 

additional specialized knowledge by their users. 

Tools for Data Transmission and Management: Farm Management Information Systems 

FMISs originated as software programs for record keeping and data storage, but they 

have developed into complex programs that can now receive input from multiple sources and 

give producers accurate information and recommendations to make management decisions on 

(Melzer et al., 2023). A Farm Management Information System (FMIS) is a web, mobile, or 

desktop application that can provide a variety of valuable services to a producer. FMIS Programs 

are software programs that store data in a database, process it, and then present it to an end user 

through a user interface that is typically branded. An FMIS can be accessed through a variety of 

formats such as on a desktop computer, a tablet, or by a web application accessed through a 

smartphone. The FMIS may work in conjunction with various types of agricultural machinery or 

hardware products, or it can also exist as a standalone software program. Many of the 

technologies previously discussed can integrate with and feed data into an FMIS. While many 

FMISs require upfront payment or a monthly subscription fee, there are also university and non-

profit FMIS resources that are available to producers for free or at a low cost. Most FMIS 

programs allow data to be stored and easily displayed to users (through a user interface). They 

can meet the management and planning needs of both livestock and crop producers. FMIS 

programs can be used to visualize and organize many different types of data including 

agronomic, operational, animal health, weather, financial, and more.  

FMIS programs help address various farm goals, such as helping the operator to comply 

with environmental and legal regulations, maintain health and safety of workers, increase 



19 
 

profitability of the farm business, maintain records from year to year, and maintain a quality 

agricultural product (Fountas et al., 2015). FMIS programs can serve as an important resource 

for complying with state and federal regulations surrounding restricted use agricultural products 

like some pesticides. For example, a crop producer might be able to use data in an FMIS to show 

that the wind and weather conditions were within a required parameter when they applied a 

certain chemical to a field. Many grants and subsidies are provided to farms by governments on 

the basis that they are engaging in certain conservation, safety, or sustainability related practices 

on their farms. An example of this would be a USDA certified organic farm using an FMIS as a 

record keeping tool to show that the products that they have applied to their organic land are in 

compliance with organic standards. In the EU where sustainability expectations for farms are 

more advanced than in the US, it has also been suggested that certifying bodies can utilize FMIS 

programs to provide growers with data on the sustainability goals and metrics that they should be 

complying with (Poppe et al., 2024). A FMIS is an organized approach to storing and sharing 

data with program sponsors that have a vested interest in this information (Melzer et al., 2023).  

FMIS programs can differ in available features. For example, some FMIS programs are 

comprehensive production and business management software programs, while others may be 

more specialized to a topic area, such as an FMIS that only keeps records of crop production 

activities and metrics in the field. When considering which FMIS to adopt for a farming 

operation, there are several things to consider, such as cost of implementation and maintenance, 

the type and size of the agricultural operation, number of employees of the farm, access to high-

speed internet, business and financial goals, geographic location and personal preferences. 

Utilizing multiple different FMIS programs may be most suited to a producer’s needs. Table 1 

outlines some of the major FMIS programs that are on the market in the United States today and 
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some of their major features. They share many core features in common and typically require the 

purchase of branded hardware (modems, sensors, or machinery) to access the full functionality 

of the system. Many of the programs provide free account creation so that a potential user can 

get acquainted with the software, but feature access is generally limited in the free versions. 

Table 1. Commonly used FMIS Programs in the United States and their basic features 
Program  Manufacturer Cost Purchase 

options 
Website 

Link 
Features Notes 

AFS/PLM 
Connect 

CNH Industrial Free Online or via 
Case/New Holland 
Dealerships 

AFS 
Connect, 

PLM 
Connect 

Wireless data 
transfer, 3rd 
party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display, modem, and 
GPS receiver to collect 
and transmit agronomic 
data 

Operations 
Center 

John Deere Free Online or via John 
Deere Dealerships 

John Deere 
Operations 

Center  

Wireless data 
transfer, 3rd 
party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display, modem, and 
GPS receiver to collect 
and transmit agronomic 
data 

Climate 
FieldView 

Bayer $0-$800/year Online Climate 
Website 

Wireless data 
transfer, 3rd 
Party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display, modem, and 
GPS receiver to collect 
and transmit agronomic 
data 

SMS AgLeader Limited free version  
 

Basic: $995/$260 
Yearly Maintenance 

 
Fee Advanced: 

$2995/$775 Yearly 
Maintenance Fee 

Through Reseller 
locations 

SMS 
Website 

Wireless data 
transfer, 3rd 
Party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display, modem, and 
GPS receiver to collect 
and transmit agronomic 
data 

Trimble Ag 
Software  

Trimble  Free Via Trimble 
affiliated  dealers, 
resellers, and 
service providers 

Timble 
Website 

Wireless data 
transfer, 3rd 
Party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display, modem,  and 
GPS receiver to collect 
and transmit agronomic 
data 

Slingshot* Raven Free Via Raven 
dealership or 
online 

Slingshot 
Website  

Wireless data 
transfer, 3rd 
Party API 
Connections, 
Agronomic Data 
Visualization, 
Mobile App 

Full functionality 
requires an in-cab 
display or iPad, 
modem,  and GPS 
receiver to collect and 
transmit agronomic 
data 

*Developed for Agricultural retailers 
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A significant benefit of an FMIS is the traceability of data from crop to crop or year to 

year. FMIS programs become more valuable to farmers over time as more data is added to the 

program since management practices can be compared year over year. A grower with access to 

multi-year data can make better decisions on varieties, and agronomic practices that can lead to 

greater yield and profitability. Some newer programs are even integrating artificial intelligence 

to improve data analysis (Kassahun et al., 2022). The future of FMIS will likely include the 

integration of even higher quality data collection over time and greater processing power to 

allow the producer to make better decisions for their operations (Fountas et al., 2015). 

There are concerns from academics and farmers when it comes to storing large amounts 

of detailed agronomic data with a particular company through the use of their FMIS programs. 

Questions have been raised around the ethics of a company’s potential use of the data that they 

have access to from users. An example of this would be companies using customer’s data to try 

to sell them additional products, or modifying the price of their products based on where the 

customer is located geographically. The question of data ownership is a critical one in the 

discussion around data privacy from agronomic data, especially after data is processed using a 

company’s proprietary technology (Sykuta 2016). Before agreeing to share agronomic or vehicle 

data with an FMIS, farmers should be sure to read the company’s data privacy policy.  

  



22 
 

Conclusion 

The precision agriculture landscape is complex and evolving, integrating technologies 

like sensors, wireless internet connection, artificial intelligence, digital mapping, diverse 

software programs, and more. Many of these technologies become even more powerful when 

combined with one another; however, issues around data compatibility and data transfer can 

make their integration challenging. New products and services developed for farming operations 

are coming onto the market rapidly as technology continues to improve and evolve. As a farm 

manager, it might seem overwhelming to determine what products best serve to improve 

operational efficiency, profitability, and sustainability. There are many considerations that ought 

to be made before investing time and money in a new product or management system for a 

farming operation. Cost, availability, complexity, climate, internet access, access to labor, 

scalability and the type of operation are a few things that are important to consider before 

choosing a product or service. The precision agriculture options available in the future will likely 

continue to improve and evolve to address agriculture's largest challenges like climate change, 

farm profitability, and feeding a growing, global population. 
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